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Summary. A general orthogonally spin-adapted formalism for coupled duster 
(CC) approaches, with an approximate account of triexcited configurations, and 
for optimized inner projection (OIP) technique is described. Modifying the linear 
part of the CC equations for pair clusters (CCD) we obtain the orthogonally 
spin-adapted, non-iterative version of the CCDT-1 method of Bartlett et al. [J. 
Chem. Phys. 80, 4371 (1984), 81, 5906 (1984), 82, 5761 ( 1985)]. Similar modifica- 
tion of an approximate coupled pair theory corrected for connected quadruply 
excited dusters (ACPQ) yields a new approach called ACPTQ. Both the CCDT-1 
and ACPTQ methods can be formulated in terms of effective interaction matrix 
elements between the orthogonally spin-adapted biexcited singlet configurations. 
The same matrix elements also appear in the orthogonally spin-adapted form of 
the CCD + T(CCD) perturbative estimate of triply excited contributions due to 
Raghavachari [J. Chem. Phys. 82, 4607 (1985)] and Urban et al. [J. Chem. Phys. 
83, 4041 (1985)], and in the OIP method when applied to the Pariser-Parr-Pople 
(PPP) model Hamiltonians. We use the diagrammatic approach based on the 
graphical methods of spin algebras to derive the explicit form of these interaction 
matrix elements. Finally, the relationship between different diagrammatic spin- 
adaptation procedures and their relative advantages are discussed in detail. 

Key words: Many-electron correlation problem - Spin-adaptation - Coupled 
cluster approach - Optimized inner projection - Graphical methods of spin 
algebras 

1. Introduction 

The need to account for higher than biexcited configurations in various ap- 
proaches to the molecular many-electron correlation problem was recognized 
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more than two decades ago. By that time, the problem of size extensivity was 
-well understood [1] (although this term was introduced only much later [2], see 
also [3]) since it was absolutely essential for a successful treatment of extended 
systems, such as the jellium model [4] of solid state physics or the infinite nuclear 
matter of nuclear physics [5], and the connected cluster structure of the exact 
wave function was clearly formulated by Hubbard [6]. These facts were soon 
exploited in the nuclear correlation problem by Coester and Kiimmel [7], who 
first employed the exponential ansatz for the wave operator. A systematic, 
general procedure yielding explicit equations for the connected cluster compo- 
nents was, however, developed almost a decade later in the context of the 
many-electron correlation problem by ~i~ek [8]. Various subsequent develop- 
ments of the coupled cluster (CC) approach, that are amply documented in 
numerous reviews [9-19] and monographs [20-23], resulted in one of the most 
efficient and reliable methodologies for the description of correlation effects in 
non-degenerate closed-shell ground states of molecular systems. 

The first ab initio comparison of the coupled cluster (CC) and configuration 
interaction (CI) wave functions at various levels of approximation [24] was carried 
out for a simple minimum basis set model of the BH 3 molecule (which was chosen 
because it was known to provide the largest triexcited contribution to the energy 
from amongst the systems examined to that time). This study showed that, in 
contrast to tetraexcited clusters that are normally well approximated by their 
disconnected ½ TZ2 component, just the opposite holds for triexcited clusters, whose 
major contribution comes from the connected T3 component. Unfortunately, an 
explicit inclusion of T3, which was generally implemented only recently [25, 26], 
is computationally very demanding, thus leaving room for various approximate 
approaches. Among these, the most useful ones are a simple perturbative estimate, 
referred to as CCSD + T(CCSD) [27] or CCD + ST(CCD) [28], and the so-called 
CCSDT-1 approximation introduced by Lee et al. [29] and Urban et al. [27]. This 
latter method was recently examined from a perturbation theoretical viewpoint 
[30] and its relationship with the optimized inner projection (OIP) method [31-34] 
was also outlined. The application of the CCDT- 1 and OIP techniques to the first 
two members of the cyclic polyene series [30, 33, 34] showed certain promise and 
indicated the desirability of finding out more precisely the limits of applicability 
of these approaches by examining the larger cyclic polyene models over the entire 
range of the coupling constant, thus complementing our earlier study [35, 36] of 
the CC approach with doubles (CCD) and an approximate coupled pair theory 
with quadruples (ACPQ) [37]. 

In order to facilitate these investigations we first undertook the derivation of 
a standard orthogonally spin-adapted form of the three different approximate 
CC models involving connected triexcitations, namely, a non-iterative version of 
the CCDT-1 method, a perturbative CCD +T(CCD) model and the ACPQ 
method corrected for T 3 referred to as ACPTQ, along the lines followed earlier 
for other CC approaches [38-40]. An orthogonally spin-adapted form is essen- 
tial for a simple formulation of the ACPQ approximation [37] as well as for the 
exploitation of CC wavefunctions in the polarization propagator calculations of 
excitation energies and transition moments [41, 42], since it employs the pp-hh 
coupled biexcited configurations [38-40, 43-45] providing a simple and direct 
relationship with the CISD formalism [16,46]. Moreover, it yields sparser 
matrices for the nonlinear CC coefficients [47] and enables one to cast the CC 
formalism into the self-consistent electron pair form as shown by Chiles and 
Dykstra [48]. The same formulation is also applied to the OIP formalism, 
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providing a direct derivation of compact expressions (with eliminated excitation 
operator matrix elements and corresponding summations when compared with 
[34]). The methods thus derived are then systematically applied to cyclic polyene 
model systems [49] and the results will be reported in two subsequent papers of 
this series. 

In order to make this paper self-contained, a brief review of general CC 
methodology is provided in Sect. 2. The basic CC approximations of triexcited 
clusters are then reviewed in Sect. 3, while the OIP technique, particularly as it 
applies to the Pariser-Parr-Pople (PPP) model Hamiltonians [50], is described 
in Sect. 4. The derivation of effective interaction matrix elements that are 
relevant to either procedure is carried out in Sect. 5, and finally Sect. 6 discusses 
and interrelates different spin-adaptation procedures. 

2. Orthogonally spin-adapted coupled cluster formalism 

We first introduce the notation employed and briefly discuss the orthogonally 
spin-adapted coupled cluster approaches that will form a basis of further 
developments studied in this series. 

Consider a closed shell system described by a spin independent Hamiltonian 
H, which we write in the normal product form HN [8, 51, 52], 

z¢ + (¢ol/¢1¢0), (1) 
where 

HN= FN + [IN, (2) 

FN = ~ (mlfln}N[Em,], (3) 
m n  

Vu = ½ ~ (rnnlvlpq)N[EmpEj. (4) 
m n p q  

Here Em, are the orbital unitary group generators [53], 

Em° = Z (5) 
cr 

where X~,,(X,,,,~) designate the usual fermion creation (annihilation) operators 
associated with a certain orthonormal spin-orbital basis [ma} =Im }{tr}, tr = +_½. 
The normal product N[ . . . ]  is defined with respect to a conveniently chosen 
independent particle model (IPM) reference state g0 that is built from a certain 
set of doubly occupied orbitals. Here and elsewhere in this series, the orbitals 
occupied in g0 (hole states) are labeled by a, b, c, d or k '  (k = 1, 2 . . . .  ), and the 
unoccupied ones (particle states) by r, s, u, w or k" (k = 1, 2 . . . .  ). The indices m, 
n, p, q run over all (both occupied and unoccupied) orbitals. The matrix elements 
(m ]f[n ) of the one-electron operator F, Eq. (3), are defined in terms of the usual 
one- and two-electron integrals as follows: 

(mlfln}= (mlzln} + Z (2(ml'lelnl'}--(ml'lell'n}). (6) 
I" 

Note that in the restricted Hartree-Fock (RHF) independent particle model 

(mlfln > _gnw (7) IS m O m n  , 

where - RHF e m are the RHF orbital energies. 
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In the closed-shell CC approach, the exact ground eigenstate 7to of the 
Hamiltonian H, Eq. (1), is represented in the cluster expansion form 

~o = er4o, <#oleo> = <4o1¢o) = 1, (8) 

with the cluster operator T given by the sum of its j-particle components Tj, 

T = ~ Tj. (9) 
J 

The operator Tj acting on 4o creates all possible connected j-times excited cluster 
components of the exact wave function To, 

Tj4o = E t~)4~ ), (10) 
K 

the summation running over an appropriate set of spin-orbital (orbital, or 
orbital and spin) labels, ¢~) designating the pertinent j-times excited configura- 
tions and t~ ) the corresponding cluster amplitudes. 

Substituting the exponential ansatz, Eq. (8), into the time-independent 
Schr6dinger equation 

HT0 = ET0, (1 l) 

we obtain 

where 

( H N e T ) c 4 0  = AE4o, (12) 

A S  = - -  (401HI,o) (13) 
represents the correlation energy when 40 is the RHF reference and the subscript 
C indicates the connected part of  a given expression [8, 51, 52]. An explicit form 
of the left-hand side of Eq. (12) in terms o f f ,  v and t (s) matrix elements is 
conveniently obtained by considering all connected and distinct resulting dia- 
grams which can be constructed from one HN (FN or VN) diagram and up to 
four Tj diagrams [8, 51, 52]. 

Formula (12) represents the fundamental equation of the CC approach; 
projecting this equation onto the excited configurations ~ )  we obtain an energy 
independent system of nonlinear algebraic equations for the unknown cluster 
amplitudes t~ ), 

(4~)}(HNeT)c[4o)  = 0 ( j  = 1, 2 , . . . ,  U). (14) 

A similar projection onto 4o yields the CC energy 

AE = ( ¢'ol(HNer)cl4o).  (15) 

In practice, CC equations (14) must be simplified by truncating the expan- 
sion (9) at a low-order excitation level j =Jmax ~. N. In contrast with the limited 
CI approach, this can be done without losing the size extensivity of the resulting 
approximate energy, since only connected diagrams appear in Eq. (14) [8, 52] (it 
can be shown that the unlinked terms exactly cancel, cf. e.g. [54, 55]). 

Since the pair clusters T2 represent the most important contribution to T, the 
basic truncation scheme is 

r g  T2, (16) 

resulting in the CCD [11] or CPMET (coupled-pair many-electron theory) 
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[8, 52, 54] approach that normally accounts for a large part ( > 80%) of correla- 
tion effects. Inclusion of monoexcited clusters T1 (CCSD approach) can be easily 
accomplished in either spin-orbital or nonorthogonally [56, 57] and orthogonally 
[39, 40, 42] spin-adapted formulations. With an appropriate choice of 40 
(Brueckner or maximum overlap orbitals), the monoexcited dusters vanish 
exactly. Even with the HF reference, their contribution does not exceed a few 
percent of the correlation ,energy (they contribute in higher orders of the MBPT 
than the T2 clusters [52, 55]). Their inclusion becomes essential when non-HF 
orbitals are employed (e.g., when localized orbitals are used [58]). 

Numerous applications of the CC approach indicate that the CCD or CCSD 
methods provide an accurate approximation of the correlation energy, assuming 
that the ground state considered is not quasidegenerate (for a review see, e.g. 
[ 13, 14]). The remaining small percentage of the correlation energy is mostly due 
to the triexcited T3 clusters [24]. The full account of the T3 dusters (CCSDT) is, 
however, very demanding because of the large number of cluster amplitudes 
irtvolved, even at the orthogonally spin-adapted level [39]. Indeed, while the ab 
initio implementation of CCD was carried out in 1978 [2, 59, 60], the general 
purpose computer codes for the full CCSDT were not available until recently 
[25, 26]. Fortunately, in nondegenerate situations, /'3 clusters can be efficiently 
accounted for in an approximate way (cf., the next section). Numerical calcula- 
tions show that full CCSDT results are in excellent agreement with full CI results 
(even when nonequllibrium geometries are involved [25]), being very close to the 
results of CISDTQ (configuration interaction with all singles, doubles, triples 
and quadruples) [26]. This is connected with the fact that the CCSDT method 
includes all possible single, double and triple excitations in the CI expansion, as 

1 2 well as the most important quadruple excitations, i.e. the disconnected term ~T2, 
which is accounted for through the exponential ansatz (8) already at the CCD 
level (the CCSDT model adds all the other disconnected tetraexcited terms: 
T 1 T3, ~T~I 2/'2, and ~ T  4, but they are usually less important). The only quadruply 
excited cluster contribution, which does not appear in the CCSDT model, is the 
connected T4 component. While already appears in the second-order MBPT 
wave function (and the fourth order MBPT energy), the lowest orders in which 
7"4 contributes to the wave function and energy are rather high (third and fifth, 
respectively) [52, 55]. Thus, normally, T4 is negligible (see, e.g. [13, 14, 52] and 
references therein). This is often symbolically expressed as 

T4 ~ ½ T~. (17) 

However, once the quasidegeneracy becomes appreciable, for example, in metal- 
lic-like or extended systems [35, 36], assumption (17) is violated and the T4 
contribution becomes essential [35, 61-64] so that CCD (CCSD) or even the 
full CCSDT approach may suffer a singular behavior. To overcome this 
difficulty, we have to account for the T4 clusters in CC equations. Clearly, a 
direct inclusion of T4 in the standard CC formalism is computationally hardly 
feasible in the foreseeable future (cf., however, the XCC or CCSDTQ-1 or 
CCSDT + Q(CCSDT) formalisms [65]). We can, however, account for T4 clus- 
ters in an approximate manner (approximate coupled-pair theory with quadru- 
ples or ACPQ, for short) whenever the unrestricted HF (UHF) solution can 
provide a reasonable approximation of 7"4 clusters [35a, 36, 37]. We shall return 
to this approach later. The other possibility is to extend the CC formalism to a 
general multireference case, but such a generalization is not straightforward and 
still far from being routine [66-78] (see also [13, 14]). 
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It follows from the above discussion that CCD represents a basic approxi- 
mate CC scheme, whose orthogonally spin-adapted formulation we now briefly 
recall. Adopting a particle-particle-hole-hole (pp-hh) coupling scheme, which 
leads to desirable symmetry properties of the resulting states [38, 39, 43-45] (see 
also, e.g., [42, 48, 75]), we define the required singlet spin-adapted biexcited 
configurations as follows [40]: 

r a s )  = Nab[S,]-1/2 E E 1 1 1 1 iS, a ) ara 
b s, ~.~b" b rb / '  (18) 

CTrtT s 

where ( j lml, j2rn2[jm) are SU(2) Clebsch-Gordan coefficients and [S,] = 
r r  r 8 r  s \ 

2S; + 1. The biexcited spin-orbital configurations ara b r b /  are defined in the 

usual way, 

The factor N~a%, 

r a  r s r  s \ 
aria b r b / =  Xt~"Xa*aXL'Xb*~I*°)" (19) 

= [(I + 6a )(l + 6r,)]-,/2, (20) 

assures normalization in the case where the hole and/or particle labels are the 
same [44]. The intermediate spin quantum number, S ,  assumes only two values: 
S; = 0 (intermediate singlet case) and S, = 1 (intermediate triplet case). The 

orthogonally spin.adapted doubly excited configurations ]a r S)b s,' Eq. (18), are 

practically identical with configurations of [38, 39] and [43-45]; they only differ 
by the phase factor ( -  1) s' ÷ ~. Therefore, they have the same symmetry proper- 
ties with respect to interchanges of particle and/or hole orbital labels [38, 44], 

Since we consider the case of a spin-independent Hamiltonian and the 
reference state q~o is a closed-shell determinant, orthogonaUy spin-adapted bi- 
excited singlet configurations, Eq. (18), can be used to write expansion of type 
(10) for the doubly excited connected component T24% of the exact wave 
function ~o, 

T21~°) = a<.b ~' ~s, (rslt2[ab)s' r S s~ (22a) 
r ~ $  ;*) _ 1_ -2(rs lab)si b s," (22b) - ,  X E It2 

abrs S i 

As in the case of spin-adapted doubly excited states, the normalized spin-adapted 
cluster amplitudes (rslt21ab)s, occurring in Eqs. (22), and the analogous ones 
defined in [38] and [39], differ only by the phase factor ( - 1) s, + 1. Consequently, 
coefficients (rslt2lab)s, have the same symmetry properties as the corresponding 
pp-hh coupled states, namely, 

<rsit2[ab )s, = ( - 1) s' (rslt2lba)s , = ( - 1)S'(srlt2lab )s, = (sr]t2lba)s,. (23) 
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Equation (23) guarantees that the number of independent duster coefficients in 
expansion (22b) is the same as the number of biexcited singlet configurations. As 
in our previous papers [38-40, 45], it is also convenient to introduce unnormal- 
ized matrix elements 

(rs Iz2 lab }s, = (N;~b) - ~(rs 1/2 lab )s,, (24) 

which will play the role of scalar factors associated with orbital diagrams 
representing T2's, whereas all the spin-coupling coefficients will be represented by 
appropriate spin diagrams [38], as we shall briefly describe later. In this way, all 
summations over the orbital labels in the final orthogonally spin-adapted CCD 
equations will be unrestricted and, simultaneously, the normalization factors, Eq. 
(20), will not appear (cf., Eq. (22b)). 

In order to determine the unknown cluster amplitudes (rsltz[ab}s, or 
(rs[z2[ab}s,, we have to write energy independent equations of type (14). They 
result by projecting Eq. (12) with T given by Eqs. (16) and (22) onto one-dimen- 
sional subspaces defined by orthogonally spin-adapted doubly excited configura- 
tions, Eq. (18). In this way, we get the system of equations, 

s,( r ;(HNer2)c~o)=O, (25) 

which, together with the expansion (22b), represents the set of basic relations for 
the orthogonally spin-adapted formulation of the CCD method. 

Expanding the left-hand side of Eq. (25), we find [38] 
2 

A¢k)(rs, ab; Si) = O, (26) 
k=O 

where 

A(k~(rs'ab;X~)=l(Nr~b)-' s, ( ra ]; (HuT~)c #0) ,  k = 0, 1 , 2 . ( 2 7 )  

Explicit expressions in terms off- ,  v- and spin-adapted t2-matrix elements for the 
absolute, linear and bilinear components A(k), k = 0, 1 and 2, respectively, are 
most conveniently derived by applying the diagrammatic approach based on 
graphical methods of spin algebras. According to this scheme, which was 
elaborated in [38] (see also [39, 40, 45]), we first construct the pertinent Gold- 
stone-Hugenholtz orbital diagrams in the Brandow representation (so-called 
Goldstone-Brandow diagrams) using the Goldstone form for FN and Vu vertices 
(the latter are referred to as bare two-electron interaction vertices) and the 
Brandow form for the Tj vertices (T2, when the CCD equations are considered). 
The Hugenholtz vertices have to be represented in Brandow form in order to 
determine the orbital phase factors [8b, 38, 52, 79] as well as to construct the 
corresponding spin diagrams, which are then evaluated by exploiting elegant and 
powerful graphical methods of spin algebras [80, 81] (see also [22, 23, 44]). The 
desired final expressions are obtained by combining the resulting spin coupling 
coefficients with the orbital factors associated with orbital diagrams (cf., also 
[82]). The basic diagrams that are needed to derive the orthogonally spin- 
adapted CCD equations in an explicit form are presented in Fig. 1. Figure la,b 
shows the orbital Goldstone-type diagrams corresponding to one- and two-body 
operators FN, Eq. (3), and VN, Eq. (4), respectively, whereas Brandow-type 
orbital diagrams together with the 3-jm-type spin diagrams that represent 
biexcited connected cluster component T2 in an orthogonally spin-adapted form, 
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1 
I I 
I I 

(a) (b) 

10; 
b Si 

(c) (d) 

1 

[Si]2 Si {~r 

(e) (f) 
Fig. la-f .  Basic diagrams used throughout the present paper, in particular to derive the orthogonally 

"spin-adapted CCD equations: a and b are Goldstone-type diagrams corresponding, respectively, to 
arbitrary spin independent one-and two-body operators in the normal product form (in particular 
F2v, Eq. (3), and VN, Eq. (4)); c is a Brandow-type orbital diagram representing either biexcited 
connected cluster component 7'2 or unnormalized orthogonally spin-adapted doubly excited ket state 

(N,~,)-q: S s,' While e is a Brand°w'type °rbital diagram representing unn°rmalized biexcited bra 

state (N~,)- is, d, f are the 3-jm-type spin diagrams associated with orbital diagrams e, e, 

respectively. Pairs of diagrams e, d and e, f may also serve as a graphical representation of the 

la r s ) a n d  ( r  ;I, respectively' normalized doubly excited singlet spin-adapted configurations b s~ s~ a 

provided that the normalization factor N~, is incorporated into the spin diagrams d, f; see text for 
details 

Eq. (22b), are given in Fig. lc,d. Diagrams in Fig. lc,d can also serve as a 
graphical representation for the normalized orthogonally spin-adapted doubly 
excited configurations, Eq. (18), provided that th~ orbital and the intermediate 
spin labels are fixed and the normalization factors N%, Eq. (20), are incorpo- 
rated into the spin graph (F'.lg. ld) [44]; otherwise they represent unnormalized 

biexcited ket states (N~)_ 1 , - s ~  - [401. For the projection onto the corre- 
a b / s, 
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sponding unnormalized bra states (N,%) -1 ( r  s, (see Eq. (27)), we also need 
s; \ a o 

the spin graph (Fig. If) which is dual to that of Fig. ld (cf., [38, 39, 44, 45]). 
Again, the normalization factor N~  must be incorporated into the spin diagram 
(Fig. If) when the projection onto normalized biexcited bra states is considered 
[44], for example, in Eq. (25). For the sake of completeness, we also give in Fig. 
le the orbital Brandow diagram representing (normalized or unnormalized) 
doubly excited singlet spin-adapted bra state. Obviously, the diagrams in Fig. 
le,c are mutually conjugate and carry fixed orbital and intermediate spin labels. 
It should be noticed that the hole lines in spin graphs (Fig. ld,f) are inter- 
changed in comparison with the analogous diagrams given in [38] and [45]. This 
is a consequence of the phase convention used in the present series (see the text 
following Eqs. (20) and (22); see also [40]). 

The resulting explicit expressions for the quantities A (k) (k = 0, 1, 2), Eq. 
(27), can be written as follows [38-40]: 

A(°)(rs, ab; Si) = [Si] l/2(rs [lab)s,, (28) 

A(1)(rs, ab; S~) = 6~(S~) ~ (r[f[~)[~s, ab]s,-6e~(Si) ~ (~C[a)[rs, ~b]s, 

+ Z  (rs I/~'~)[~g, ab]s, + Z (a~llab )[ rs, ab']s, 

-6~.b(S~)6~(S,) Z Z (6s, g,(arl[a~) -½IS,, £]l/:(arll~a))[~s, 5b]#,, (29) 

and 

A(2)(rs, ab; SD = A~,~(rs, ab; S~) + A[E~(rs, ab; Si) 

+ A(4Z)(rs, ab; S,) + A(5:)(rs, ab; S,), (30) 

where 

A~2)z(rs, ab; S,) = ¼[Si]I/2~,(Si) ~ [~1, ~]1/2 

(31a) 

A(3Z)(rs, ab; S;) = --½5frs(S;) ~ [~i] 1/2 ~ <,~ j l~g) [ r~  ' ab]s,[Sg, 5b']#i, (31b) 
~, ab'ee 

A(42)(rs, ab; S,) = --½6~b(S,) E [~'1 I/2 E (Sff[[Fg)[rs, aa~s,[~g, bb~,,, (31c) 

A(sZ)(rs, ab; S/) = ½[S;]-1/2 ~ (a~][eg)[e~, ab]si[rs , 5b']s ,. (31d) 
ab'~g 

The algebraic coefficient F appearing in Eq. (31a), 

f1 -t F(St+~q~ + ~ ) = 4 C ( S i , ~ , s E i ) = 4  1 ~ ~ , (32) 
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assumes the following values [37]: 

s (33) --:F(0) = F(1) = 1, F(2) = ½, F(3) = 3. 

The symbol C, Eq. (32), is a 9-j symbol introduced in [39]. The operator 5e,,,(Si) 
is a two-index symmetrizer (Si = 0) or antisymmetrizer (St = 1), i.e., 

5a,,,(Si) = 1 + ( - 1)S~(mn), (34) 

where (ran) designates a transposition of  indices m and n. The multiple symbol 
[X1, X2 . . . . .  Xj] is defined as 

J 
[x , ,  x2 . . . .  , xs] = I I  [x,]. (35) 

i = l  

For simplicity we dropped the interaction operator v in all two-electron integrals, 
i.e. 

<mn IlPq > = <ran Iv [pq >. (36) 

Consequently [cf. Eq.  (28)], the (anti)symmetrized v-matrix elements become 

<mnlvlpq>s = 5am,(S)<mnlvlpq> = 5~pq(S)<mnlv[pq> 

= <mnlvlpq> + ( -1)S<mnlv lqp> =- <mn ]lPq>s. (37) 

In order to write rather complex expressions for A (k) (k = 0, 1, 2) in a condensed 
form, we also introduced the shorthand notation for the unnormalized cluster 
amplitudes, Eq. (24), namely [35a], 

[rs, ab]s, = <rslz2lab >s r (38) 

The resulting Goldstone-Brandow orbital diagrams, which represent succes- 
sive terms appearing on the right-hand sides of Eqs. (28), (29) and (31), are 
shown in Figs. 2-4 ,  respectively. As usual [8, 38-40, 52], vertices representing a 

, onto which we rs -1 project, are not drawn. Instead, bra state (Nab) s , \ a  b I 

external lines carry the fixed orbital labels characterizing the configuration 

r sl. We do not the associated spin diagrams, because they are 
I 

present v e r y  

s i  a o I 
simple and can be easily obtained from the orbital diagrams by interconnecting 
corresponding lines of spin graphs representing cluster components, Fig. ld, and 
projections onto the biexcited states, Fig. If  (for more detail reader is referred to 
[38]; [39] and [45] are also recommended). Summation over the intermediate spin 
quantum numbers ~ ,  labeling Brandow T2 vertices, is always understood to be 

I 
I 

S t 

Fig. 2. Golds tone-Brandow orbital diagrams [~s  = 1 + (rs)] represent- 
ing A (°), Eq. (28) 
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a r 

(a) (b) 

S, sS b 

a r 

(e) (o) 

b b 

(e) (f) 
Fig. 3a-f. Goldstone-Brandow orbital diagrams corresponding to successive terms on the right- 
hand side of Eq. (29) 

carried out. In some cases, however, spin diagrams restrict the summation over 
Si's to only one term labeled by the value S; = Si characterizing the biexcited bra 
state onto which we project. In the orbital diagrams corresponding to these cases 
we replaced the free label Si by the fixed label S~. The operators ~b and ~ s  
acting on orbital diagrams in Figs. 2 -4  denote two-index symmetrizers 

~m, ------ 6Pm,(0) = 1 + (ran); (ran) = (ab) or (rs). (39) 

Thus, for example, Fig. 4c represents two diagrams: one, which is given in Fig. 
4c and corresponds to canonical labeling of external lines [38] and another one, 
which results by interchanging indices r and s in Fig. 4c and corresponds to 
non-canonical labeling of the open paths. This concise notation was introduced 
in our recent paper [40], where we also pointed out a one-to-one correspondence 
between the symmetrizers 6aab(SP~s) in orbital diagrams and the 
(anti)symmetrizers ~ab(S,') (6~s(Si)) in algebraic expressions. Consequently, the 
number of (anti)symmetrizers is reduced to a minimum, since they are only 
present when the open paths in the orbital diagrams can be labeled in several 
distinct ways [40]. 
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(e) 
Fig. 4 a - e .  Goldstone-Brandow orbital diagrams associated with the individual contributions A~ 2) 

(i = 1 . . . . .  5) to the nonlinear part of the CCD equations A (2), Eq. (30). A~2~, Eq. (31a), is sum of 
(2) (2) the contributions A, and A 2 corresponding to diagrams a and b, respectively. The remaining three 

diagrams, e-e, correspond to contributions A~ 2) (i = 3-5) given by Eqs. (31b)-(31d), respectively; 
el. text for details 

Once Eqs. (26) and (28)-(31)  are solved for the unknown spin-adapted 
cluster coefficients [rs, ab]s,, the energy AE is evaluated from the formula [38-40] 

AE = (¢ol(aNZ2)cl¢o) = ½ E (ab Ilrs) E [si]'/2[ rs, ab]si, (40) 
abrs  S i 

which results by assuming approximation (16) in the general expression (15). 
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The orbital diagram corresponding to Eq. (40) is not reproduced here, since it 
can be found elsewhere [38, 39]. 

The nonlinear part of the CCD equations, A (2), is broken into the contribu- 
tions corresponding to five diagrams given in Fig. 4. Contributions associated 
with diagrams of Fig. 4a,b are collected in one term a(2) Eq. (31a), since they i x  1 , 2 ,  

are exchange versions of one another. Neglecting the nonlinear part of the CCD 
equations completely, i.e. setting ,A (2) = 0, we obtain the corresponding linear 
approximation, L-CCD, which is equivalent to an infinite order perturbation 
theory with intermediate doubly excited states (DMBPT(oo)) [11, 52]. As long as 
no quasidegeneracy is present, the L-CCD approach yields very good results. It 
breaks down, however, and becomes singular when the lowest-lying canonical 
biexcitation becomes degenerate with the reference configuration ~0 [46]. In 
many cases, the nonlinear terms of the full CCD method are capable of 
correcting this behavior [62-64, 83]. However, as already mentioned, when 
condition (17) is violated (for example, when linear metallic-like systems are 
considered) even the full CCD approach becomes singular [35]. Yet, when we 
retain only nonlinear diagrams that are separable over the hole line(s), i.e. those 
in Fig. 4d,e (so that we set 

A (2) - -  A (2) -- 0 (41) 
1 ,2  - -  3 

in Eq. (30)), the resulting approximate coupled-pair (ACP-D45 or ACP, for 
short [47, 62]) or approximate CCD (ACCD [84]) approach provides correlation 
energies that are not only very dose to those obtained with the full CCD method 
in all standard cases, both at the semiempirical [35, 36, 62] and ab initio 
[47, 62, 64, 84] levels, but also represents an excellent approximation in highly 
degenerate situations [35, 36, 47, 62, 64] where the L-CCD [35, 36, 62, 64] or 
even the full CCD [35] approach is plagued with singularities. This remarkable 
behavior of the ACP approach can be partially explained by the mutual 
cancellation of the contributions arising from the first three diagrams of Fig. 4; 
indeed, careful numerical inspection indicates that the ACP-D123 approxima- 
tion, in which nonlinear contributions A~42) and A~ 2~ are neglected, yields correla- 
tion energies that are very close to the L-CCD results [35a, 47, 62]. The fact that 
the ACP approach provides good results even in highly degenerate cases, when 
the basic assumption of the CCD method, Eq. (17), and the CCD method itself, 
break down [35, 36], indicates that the approximation (41) simulates an incorpo- 
ration of the higher-excited connected cluster components, such as 7"4. The 
evidence for this was given in [37]. By examining the general cluster structure of 
the UHF solution, it was shown that correcting the CCD equations for the effect 
of connected tetraexcited clusters by including the term 

a(4)(rs'ab;Si)-(Mrs'~-I Ira s] I - ~, ab, (HNT4)c ~o , (42) 
si b 

effectively eliminates the contribution from the first three nonlinear diagrams in 
Fig. 4. The resulting approximate procedure, referred to as the ACPQ approach 
[37], is identical with the ACP-D45 approximation, except for the numerical 
factor of 9 associated with the fifth nonlinear diagram contribution (Fig. 4e) 
when projected onto the triplet coupled (S; = 1) state. Thus, the explicit ACPQ 
equations take the form 

A(°)(rs, ab; Se) + A(1)(rs, ab; Sj) + . / ~ ( 2 ) ( r s ,  ab; Si) = O, (43) 
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where A ~°) and A (1) are given by Eqs. (28) and (29), respectively, and 

Ji~2)(rs, ab; Si) = A~42)(rs, ab; Si) + [S~]2a~2)(rs, ab; Si), (44) 

with A] 2) and A~ 2) given by Eqs. (31c) and (31d), respectively. It should be 
pointed out that the above simple relationship between the ACPQ and ACP-D45 
approaches (a factor of 9 for the fifth nonlinear diagram in triplet coupled 
equations ) can only be achieved when we employ the orthogonaUy spin-adapted 
formulation of the CC theory, as briefly outlined in the present section. 

We must emphasize that the ACPQ approach will provide good results only 
when the UHF wave function reasonably approximates the T4 clusters. This does 
not imply, however, that this approach will yield essentially the same results as 
the UHF based CCSD, since the latter approach will be plagued with a singular 
behavior (noncontinuous first derivatives of the potential energy surface) when 
the triplet (nonsinglet) instability [85] sets in, while the ACPQ approach is 
completely free of this problem. Numerical calculations, both at the semiempiri- 
cal and ab initio levels, for both orbital and configurational-type [35b] quasi- 
degeneracies, show that the ACPQ approach yields amazingly good correlation 
energies and invariably provides a slight improvement over the ACP results 
[35a, 36, 64]. Therefore, in the present series of papers, the ACPQ approach is 
employed as an approximate CC scheme accounting for the connected tetra- 
excited cluster components. Computationally efficient methods for the approxi- 
mate incorporation of the connected triply excited clusters in both ACPQ and 
CCD approaches are explored in the next section. 

3. Approximate account of the connected triply excited clusters in CCD 
and ACPQ equations: CCDT-1, CCD + T(CCD) and ACPTQ schemes 

Numerous MBPT and CC studies indicate that connected triply excited clusters 
play an important role in various problems of physical and chemical interest, 
particularly when high degree of accuracy is required (for some examples, see 
[14, 18, 19, 25, 27, 29, 39, 83a] and references therein). In contrast with T4 clus- 
ters, 7"3 clusters can be appreciable in both quasidegenerate and non- 
degenerate situations, and are normally much more important than their discon- 

1 3 netted counterparts T1 T~ and gT1 (the latter two terms are accounted for in the 
full CCSD approach), as first pointed out in [24]. Since the full inclusion of T3 
clusters is very demanding [25, 26], there is a need for development and imple- 
mentation of approximate schemes. 

We shall concentrate on an approximate account of 7"3 clusters in the CCD 
and ACPQ approaches. Although an incorporation of the monoexcited clusters 
is straightforward, we assume that TI = 0, since in the following papers of this 
series we shall deal with systems, for which the HF orbitals are completely 
determined by the symmetry and thus represent simultaneously Brueckner 
orbitals. We shall employ the orthogonally spin-adapted formulation of the CC 
theory outlined in the preceding section. 

Consider the CCDT approximation, i.e. 

T -  7"2+ T3. (45) 

In order to write the corresponding CCDT equations that determine T2 and T3 
cluster components, we have to project Eq. (12), with T given by Eq. (45), onto 
the space spanned by doubly and triply excited configurations. Projection onto 
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doubles gives 

(r a II b (HNe'r:+ ~)c 4o = l + Tz +½T~ + T3)]c 4o =0. 
Si a si 

(46) 

However, the number of similar equations projected onto triexcited configura- 
tions rapidly increases with electron number and the size of the basis. Even when 
we simplify these equations by neglecting higher-order terms, as was done in the 
extended CPMET (ECPMET) approach [24, 39], the problem is still untractable 
for larger bases. A possible remedy is to reduce the number of equations to be 
solved. We thus consider only Eq. (46) and estimate the correction due to 
triexcitations, 

A(3)(rs, ab; Si) = 40 , (47) 
Si 

through some approximation for T3140). Let us consider this possibility in 
greater detail. We shall employ RHF orbitals, so that 

A°)(rs'ab;Si)= s,(ra ;(VNT3)c4°)" (48) 

Since we cannot estimate the T3 amplitudes from the UHF wave function, as 
explained in [ 37], another method of approximating the component T3 [40 ) must 
be found. We start by writing the MBPT expansion for T314o), namely [52], 

T314o)= ~ • {(PoVu)'14o)}c3. (49) 
n = 2  C 3 

The sum over Cr indicates that we include all the connected resulting MBPT 
diagrams with 2r external lines, P0 is the reduced resolvent for the unperturbed 
Hamiltonian operator Ko = F~v, 

Po = P J), (50) 

with J 
Q (J) 

e ( g )  = - -  ( 5 1 )  

and x~ °) is the eigenvalue of Ko corresponding to its ground eigenstate 4~ °) ~ 4o, 
so that X(o °) = 0. Finally, Q(J) is a projector onto the subspace spanned by the 
j-times excited determinants. 

Let us approximate the connected triexcited cluster component of the exact 
wave function ~, given by expansion (49), by considering only diagrams of the 
type shown in Fig. 5, where a small solid circle represents the non-oriented 
Hugenholtz VN vertex and a large open circle the non-oriented Hugenholtz Tz 
vertex. A vertical dashed line indicates the MBPT denominator. This approxima- 
tion is correct up to second order in the wave function (fourth order in the 
energy), since 

r:140>= Z (( oV )"14o>}c2 
n = l  C 2 

= ~ + O(VZ), (52) 
1 
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I 

I 

I 

Fig. 5. Hugenholtz diagrams contributing to the triexcited 
connected cluster component of the exact wave function, 
T3[tlio), considered in the approximate account of triple exci- 
tations in the CCD and ACPQ methods. For the sake of 
simplicity, we use nonoriented fermion lines, so that the above 
arrowless diagram represents in fact two oriented diagrams 

and, consequently, 

1 

, , + O ( V  3) = T~2)[~o) + O ( V 3 ) ,  
v 

(53) 

where T(32) is the second-order contribution to T3. Diagrams of the type shown 
in Fig. 5 represent an infinite class of the MBPT diagrams contributing to 
T31~o), although this class does not contain all the possible diagrams contribut- 
ing to T31#0). For example, diagrams of the type shown in Fig. 6 which 
contribute to the third order, are not included. 

Rewriting Eq. (48) in a diagrammatic form and replacing the /'3 vertex by 
diagrams of the type shown in Fig. 5, we get 

A (3)(rs, ab; Si) -~ 

! 

i 

12 

(54) 

where, according to our notation, Co indicates the set of vacuum resulting 
diagrams (connected resulting diagrams that have no external lines [52]). To 
obtain Eq. (54), we have introduced the orientation of lines into the arrowless 
skeleton of Fig. 5 and replaced Hugenholtz Vu vertices by Goldstone ones (see 
Fig. lb). We can easily verify that the subscript C in Eq. (54) is superfluous and 
that the two diagrams enclosed in parentheses represent all the possible resulting 
diagrams that we can form from o n e  p~3), one VN and one T2 diagrams, i.e. from 
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I I 
I ! 
I I 

,, , 

I I I 
i [ I 

Fig. 6. Hugenholtz diagrams contributing to the con- 
nected cluster component T3[#0) and not included in 
the infinite class of MBPT wave function diagrams 
represented by Fig. 5. Again, arrowless fermion fines 
are used (cf., caption to Fig. 5), so that the above 
diagram represents in fact three oriented Hugenholtz 
diagrams contributing to the third-order MBPT wave 
function 

diagrams 

[ 
l 

~t 

1. and 

respectively. Thus, Eq. (54) becomes 

A(3)(rs, ab; Si) ~- 

$ "~ i : i 

i 
I 

=s,(ra svb " ~-o"~VNT~o) 

( 5 5 )  

where we have used Eq. (22a) in the last step. 
It follows that, in the RHF case, the correction accounting for the triples, Eq. 

(47), can be approximated by the linear form in the t2 cluster amplitudes, Eq. 
(55). Assuming some fixed but arbitrary ordering of the orthogonally spin- 

\ • r S 
adapted biexctted states ~ )  , and designating them and the corresponding 

I a O l s ~  
cluster amplitudes (rslt2lab)s, by #i and ti (i = 1 . . . . .  M),  respectively, we can 
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write this correction as 

A(3)(i) - ~  W~)tj, (56) 
J 

where 
Q (3) 

w J) = < ;IvN vNI j>. (57) 

With the same notation, the CCD and ACPQ equations, (26) and (43), take 
the form 

ai + ~ bqtj + ~ c~jktyt k = 0 (i = 1 . . . . .  M),  (58) 
j j<~k 

where the constant and linear terms 

a; = (~ilnN]~0> = (~i [VNI~05, (59) 

b,j = (4;  [HN I% 5, (60) 

are identical with the corresponding CI matrix elements. The connected triple 
excitations can thus be incorporated into the CCD and ACPQ approaches 
through a slight modification of their linear part, namely 

at + E ~jtj + ~" c~jktjt k = 0 (i = 1 . . . . .  M), (61) 
j j~<k 

where 
~j = b/j + W(, 3), (62) 

with W~} ) given by Eq. (57). In a similar way we can account for the effect of 
triples in the orthogonally spin-adapted CCSD [40] (or ACPQ with singles) 
approach, provided that we neglect T~ 7"3 term (contributing for the first time in 
the fourth-order MBPT wave function, assuming the HF reference) in equations 
projected onto doubles. In addition to the matrix elements between doubles, Eq. 
(57), we also need analogous matrix elements between singles and doubles. We 
note that the system of Eqs. (61) has the same structure as the corresponding 
CCD or ACPQ systems, Eq. (58), so that it can be solved in the same way as 
CCD equations [13, 14, 18, 47]. 

An equivalent procedure at the spin-orbital level was proposed by Lee et al. 
[29] and is referred to as the CCSDT-1 [29] or CCSDT-la [27] method (for 
CCSDT-n models, see [18, 25, 27, 86]). It is easily seen that CCSDT-1 accounts 
for diagrams of the same type as shown in Fig. 5 and neglects disconnected T1 T3 
dusters. When these latter terms are taken into account, a more complete model 
referred to as CCSDT-lb [27, 87] results. However, for the vanishing monoexci- 
tations (T~ = 0) considered in the present series, both CCSDT-la and CCSDT-lb 
models are identical and the resulting approximation can be simply termed 
CCDT-1. Thus, the orthogonally spin-adapted CCD theory corrected for con- 
nected triples, defined by Eqs. (61) and (62), where c;jk are given by Eqs. (30) 
and (31), will be designated as the CCDT-1 approach. Our formulation of the 
CC(S)DT-1 method differs somewhat from that given by Lee et al. [29], since we 
first incorporate triples by correcting the linear part of the CC(S)D equations. 
Once this is done, the resulting system of nonlinear equations is solved itera- 
tively. In the Bartlett group implementation [29], the CCSD equations are 
corrected for the triples in every iteration. Provided that the iterative scheme 
converges, the result of both implementations is the same. Clearly, in large scale 
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ab initio computations, when we cannot store even the linear b u coefficients, the 
iterative method of solving the CC(S)DT-1 equations is inevitable. However, the 
noniterative formulation, as presented above, will prove useful in calculations for 
small or model problems. 

Numerical applications confirm the high accuracy of the CCSDT-1 model and 
its ability to reproduce a large portion of the triple excitation contribution to both 
the correlation energy and molecular properties in several chemically interesting 
systems [25-27, 29, 88-91] (for a comprehensive review and recent references, see 
[19]; cf. also review articles [14, 18]). However, a neglect of higher-order contri- 
butions to T3 may result in a poor performance of the CCSDT-1 approach. This 
happens particularly for nonequilibrium geometries [91(b)] when T3 effects 
become very prominent. 

Equations (61) and (62), with coefficients cuk given by Eqs. (44), (31c) and 
(3 ld), represent the ACPQ equations corrected for the effect of connected triples. 
We thus refer to the resulting approach as the ACPTQ (approximate coupled-pair 
theory with connected triples and quadruples) approximation. We expect that this 
method will yield rather accurate correlation energies even in quasidegenerate 
situations (similar to the ACPQ model), although convergence problems con- 
nected with the perturbative way of including the triples certainly will arise. 

There is yet another simple approach, which is almost as good as the 
CCSDT-1 method for many applications. It was suggested by Urban et al. [27] 
and, independently, by Raghavachari [28] and, like the CCSDT-1 scheme, 
requires the calculation of matrix elements W~ ), Eq. (57). In the formulation 
presented by Urban et al. this approach is referred to as the CCSD + T(CCSD) 
model, while Raghavachari labeled his version CCD+ST(CCD).  In the 
CCSD+T(CCSD)  scheme, converged CCSD t2-cluster coefficients t,. ccsD 
(i = 1 . . . . .  M) are used to evaluate the triple excitation contribution to the 
correlation energy, A E  r, according to the formula 

A E  r = ~ (tCCSD) * W (3) t CCsD (63) 
• . - i  I " ' i j  ~ j  " 

This contribution is then simply added to the result of the CCSD calculations. In 
CCD + ST(CCD) method, the converged solution of the CCD equations (58) is 
employed and contributions of both singles and triples, A E  s and A E  r, respec- 
tively, are evaluated. The corresponding expressions are 

A E  s X?/tCCD)* W(I)tCCD (64) 
"~- / , ' . v i  J "" i j  - j  , 

i , j  

where 

and 

Q(I) 
(65) 

A E  T = ~ ~tCCD~ * W(.3) t c. c °  (66) 
~.v~ / " t j  - J  • 

i , j  

Since the amplitudes t cc(s)D are correct to the first order, both the 
CCSD + T(CCSD) and CCD + ST(CCD) approaches provide the correlation 
energy correct through the fourth order (one can easily verify this by replacing 
t,. ccsD in Eq. (63) and t,. ccD in Eqs. (64) and (66) by the first-order wave function 
expansion coefficients t~°; the resulting expressions give standard formulas for the 
contribution of singles and triples to the correlation energy in the fourth order). 
In addition, just as the CCSDT-1 scheme, they include significant fifth and 
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higher-order contributions. In many cases, the CCSD+T(CCSD) and 
CCD + ST(CCD) methods yield very accurate results, as the correlation energy 
calculations [27, 89, 90], calculations of the excitation [28, 89] and dissociation 
[28, 92] energies, the reaction energy calculations [90], and the molecular struc- 
ture studies [89, 91] indicate (see also [18, 19]). There are, however, situations 
where CCSD +T(CCSD) and CCD + ST(CCD) are likely to fail. These are: 
(i) the strongly correlated limit, where VN becomes the dominant part of the 
Hamiltonian, and (ii) highly degenerate situations, when the CC(S)D approach 
suffers a singular behavior and solution of the CC(S)D equations is no longer 
available (cf. the previous section). Clearly, in the first case, perturbative inclusion 
of triples (and singles) is no longer correct and additivity of the triexcited 
contribution, which is assumed in both the CCSD+T(CCSD) and 
CCD + ST(CCD) models, breaks down [61]. Both cases will be studied in Part 
II of this series. 

The main reason for introducing the simple non-iterative CCSD + T(CCSD) 
model [90] was to eliminate the iterative way of inclusion of triples in the original 
formulation of the CCSDT-1 method [29]. As already mentioned, our formulation 
of the CCSDT-1 model is noniterative, since in our case matrices of coefficients 
ai, ~j and cijk can be kept in the fast core and thus we can use standard 
Newton-Raphson method combined with the non-iterative Gauss elimination 
algorithm to solve the linear systems. Consequently, there is no essential difference 
in the computational effort that is required in the CCSD +T(CCSD) and 
CCD + ST(CCD) approaches, and in our formulation of the CCSDT-1 scheme. 
When T1 = 0 (the case considered here), the CCSD + T(CCSD) and CCD + 
ST(CCD) methods become identical. In this case we shall refer to this approach 
as the CCD +T(CCD) approximation. It is defined by Eq. (58), where the 
coefficients cijk are given by Eqs. (30) and (31), together with Eqs. (40) and (66). 

The three CC models presented in this section, namely CCDT-1, ACPTQ and 
CCD + T(CCD), require calculation of the effective interaction matrix elements 
W~ 3), Eq. (57), between orthogonally spin-adapted biexcited singlet 

configurat ions;  s )  b , Eq. (18). Before deriving the explicit form of these 
Si 

elements, we note that the same matrix elements are also required in the OIP 
method, belonging to a completely different category of quantum mechanical 
approaches. We consider this approach in the next section. 

4. Optimized inner projection technique for PPP model Hamiltonians 

It is well known that the determination of lower bounds is much more difficult 
than the calculation of upper bounds using a standard variation principle. Even 
today, the lower bound determination remains to be limited to simple or model 
Hamiltonians and, at the ab initio level, to three-electron systems (see, e.g., [93] 
and references therein). Nonetheless, the study of lower bounds represents one of 
the basic and challenging problems that focusses the attention of many scientists. 
The sixties and early seventies were particularly productive. Weinstein's interme- 
diate problem method [94], further developed by Aronszajn [95], was adapted to 
quantum mechanics by Bazley [96] and Bazley and Fox [97], and later combined 
by L6wdin with his concept of a bracketing function [98-100]. Subsequently, 
Lrwdin's method of inner projection [99, 101] became a subject of numerous 
studies and applications [102, 103] (see also review [100] and references therein). 
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More recently, classical L6wdin's formulation of  the inner projection technique 
was slightly modified and the optimized inner projection (OIP) scheme (referred 
to also as the renormalized inner projection method) was introduced [31]. It was 
applied with remarkable success to evaluation of  lower energy bounds for simple 
one-particle systems (anharmonic oscillator and hydrogen atom in magnetic 
field) [31, 32] as well as for more complex PPP model of  cyclic polyenes [33, 34]. 
In the latter case the results are much less convincing [34] and a further 
investigation of  the applicability of  the OIP technique is needed. We shall first 
present the main ideas of the OIP approach as formulated by ~i~ek and Vrscay 
[31]. Then, we shall concentrate on the OIP method for the PPP model 
Hamiltonians, particularly as applied to cyclic polyenes. 

In order to apply the OIP technique, we first write the Hamiltonian .,~ of our 
system as a sum of an unperturbed Hamiltonian ~(o)  and a perturbation ~ .  It 
is assumed that the solutions of  an unperturbed eigenvalue problem, 

~(0) (~0)  = ~0)(~ (k0) ' Ox~(00) < '~'IA~- (0) < 't~2#-(0) < . .  ., (67) 

are available, and ~e- is a positive definite operator, i.e., 

~e- > 0. (68) 

As in perturbation theory, we consider the perturbed eigenvalue problem, 

~¢g~Ok = ~k ~kk, (69) 

where gk ~g(k °) and ~kk ~b(k °) as ~ ~ 0 .  We do not pretend, however, to solve 
it. Our objective is to evaluate lower bounds to the eigenenergies gk and this is 
achieved by finding the eigenvalues 8~ of  an intermediate Hamiltonian 

9f¢' = ~¢g (o) + ~¢r,, (70) 

where ~ '  satsifies the inequality 

which in turn implies that 

In the OIP method, "U' 

~e" < ~ ,  (71) 

8~, < 8k. (72) 

satisfying Eq. (71) is defined by partitioning the 
solution space for ~¢g(0) and considering the (M + 1)-dimensional manifold j/C~gO) 
spanned by q~ ~o °) and M excited eigenstates of  ~(°) ,  

jl(gO) = (go,  gl . . . . .  g u  ) ,  (73) 

where 

go = ~b(0 °), gi = q~(k °) (i = 1 . . . . .  M). (74) 

Then, the new manifold 

M/~ °) = (,fo,f~ . . . . .  f~t ), (75) 

spanned by the functions 

f .  = ~ l /Zg i  (i = 0 ,  1 , . . . , M ) ,  (76) 

where ~e-1/2 denotes the positive square root of  ~e" (note that, in contrast to the 
functions g;, the f. are not necessarily mutually orthogonal), is introduced and 
~r, is simply defined as an inner projection of  ~ onto the manifold j/~o), 

,¢/., = ,,//- 1/2Qf.¢: 1/2, (77) 
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where Qf is the projection operator associated with the subspace j[}o). In this 
way, condition (71) is automatically satisfied, since 

0 <~ Of ~< 1. (78) 

The OIP lower energy bounds are the eigenvalues of the Hamiltonian (70), 
where ~ '  is given by Eq. (77). Therefore, they are found by solving the equation 

f ' (¢ )  = 8, (79) 

where f ' (g )  is the bracketing function [98-100] for the Hamiltonian 9if'. The 
particular choice of the subspaces j[}0) and j[~o) [see Eqs. (73) -(76)] enables us 
to write the following expression for f ' (8 )  [31]: 

M 

f ' (g )  = ¢~0 °) + ~, ~Voo,(A(e)-')o-'Ujo, (80) 
i , j  = 0 

where 

= <gil lgj>, (81) 

and A(g) is the (M + 1) by (M + 1) parameter dependent matrix, whose entries 
are given by 

A(8)iJ=~V~0--k=X ~ 8 - - g ~  °)' O<~i,j<~M. (82) 

It must be noticed that the summation over k in Eq. (82) is not restricted to 
functions g~, Eq. (74), which span the manifold ~,~o), but is infinite and runs 
over all excited eigenstates of the Hamiltonian ~(o). Therefore, not only matrix 
elements ~)., Eq. (81), have to be evaluated, but, in principle, we need to know 
all the matrix elements of ~ between the eigenfunctions of ~(o) which span ~#go) 
and all the eigenstates of jog(o), i.e., 

% - - ~ ,  = (g , l~[~,°) ) ,  O<~i<~M,k=O, 1 . . . . .  (83) 

Fortunately, in well-behaved cases, including the PPP model of unsaturated 
hydrocarbons considered below, the matrix elements ~k  vanish for l i - k l  
sufficiently large. Consequently, the summation over k in Eq. (82) becomes finite 
and, as we shall see, can be relatively easily performed. 

Once the bracketing function f ' (¢) ,  Eq. (80), is known, several numerical 
schemes can be employed to solve Eq. (79). A very simple iterative procedure, 
with the individual iterates oscillating about one of the roots g~, was suggested 
in a paper by ~i~ek and Vrscay [31]• It is based on the iteration sequence 
8k.m +1 =f'(Sk,m) (m = 0, 1, . . . ) ,  where the initial guess 8k,0 is the upper bound 
to ¢k- The sequence 8km (m = 0, 1 , . . . )  converges to the lower bound 8~, 

• t ' t / provided that ldf (8)/dg < 1 for every 8 e (gk -- Agk, 8k + Ao~k), where 
Agk = Igk.0- o*~]. In view of the properties of bracketing functions [98-100], 
this implies that the initial guess o~k 0 lies on the same branch o f f ( g )  as does o~ 
and is sufficiently close to 8~. ~i~ei¢ and Vrscay [31] suggest the kth variational 
energy g~ar calculated in a basis {go, gl, • • •, gM} as an optimal choice for 8k.0. 
This choice makes the whole method self-contained and transparent. It can 
cause, however, serious difficulties in practical applications. Higher-order proce- 
dures for finding the solutions of Eq. (79), e.g., Newton's method or more 
advanced root searching techniques, may serve as a possible remedy for these 
difficulties (cf. Part III of this series). 
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Equations (79)-(83) represent the basic set of formulas characterizing the 
OIP approach. In order to apply them, we have to know how to split a given 
Hamiltonian into the uperturbed part and the positive definite perturbation. In 
the case of simple one-particle systems, like anharmonic oscillator or hydrogen 
atom in a magnetic field, this can be achieved with the help of simple renormal- 
ization procedures [31, 32]. However, when real many-electron systems are 
considered at the ab initio level, the positive definiteness of the perturbation is 
affected by the presence of the effective one-electron part in the Hamiltonian [cf. 
Eqs. (1)-(4)] and, consequently, a decomposition of the Hamiltonian into ~(o) 
and a positive definite ~ may not be possible. 

At a semiempirical level, the situation is somewhat better. Consider, for 
example, the PPP model of neutral planar conjugated hydrocarbons [50]. It 
assumes that the r~-electrons constitute a separable electronic group and move in 
an unpolarizable field of nuclei, inner-shells and a-electrons. In the second 
quantized form, the PPP Hamiltonian can be expressed as 

+ ~ ~ ?u~(E.uE, v 6.~E.~), (84) H~ =~zl~vEuv 1 
.uv I, tv 

where the orbital unitary group generators E~v are given by Eq. (5) and the 
creation and annihilation operators are defined on a hypothetical minimum basis 
of symmetrically orthonormalized [104, 105] 2pz carbon atomic spin-orbitals 
Ipa) = ]/t)la), a = ___ ½, localized on carbon nuclei. Like all semiempirical Hamil- 
tonians, H~ is defined directly by specifying the one- and two-electron matrix 
elements, 

= < lzlv>, (85)  

and 

?u~ = (#v I[#v), (86) 

respectively, rather than by selecting the spin-orbital basis set {l~a)} as is done 
for ab initio model Hamiltonians. The absence of other than one- and two-center 
Coulomb-type two-electron integrals, Eq. (86), in the Hamiltonian H= is due to 
the assumption of zero differential overlap [50]. The diagonal one-electron 
matrix elements z~ are determined with the help of the Goepert-Mayer and 
Sklar approximation [50]. Consequently, 

z~,u = % -  ~ 7u~, (87) 
v ( ~ u )  

where ~ is a so-called Coulomb integral. For the off-diagonal matrix elements 
zuv, # # v, the tight-binding approximation is invoked, so that 

= ~fluv, if # and v are nearest neighbors, (88) 
zuv [0, otherwise, 

where/~u, is a so-called resonance integral. For the neutral conjugated hydrocar- 
bons considered here, we can further assume that all the one-center integrals are 
equivalent, namely that 

% = %, Yl,~ = 700. (89) 

Consequently, the PPP Hamiltonian H~, Eq. (84), is fully determined by the 
integrals %, flu~ (p, v nearest neighbors), Y0o and ?,~ (/1 # v), considered as 
empirical parameters. The problem of parametrization choice can be found 
elsewhere [50] and will be addressed in Part II of this series. 
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In order to split the PPP model Hamiltonian into the unperturbed part X '(°) 
and the positive definite perturbation ~e', and thus fulfil the basic requirement of 
the OIP technique, we have to consider the total Hamiltonian, hereafter denoted 
as g ,  including the internuclear repulsion term ~ ,<~  ?~,~ [50], rather than the 
purely electronic Hamiltonian H~ given by Eqs. (84) and (87)-(89). It can be 
shown (see, e.g., [53]) that 

= H,, + ~ ?~,~, (90) 
/ t < v  

can be decomposed as follows: 

= ~vt~(o) + ~/r, (91) 

where 

and 

~(o) = ~ ct~,n~, + E" fl~E~ = Not o + E "fl~,,E~,v, (92) 

= ½ ~ ~u~(nu - 1)(n~ -- 1). (93) 
.uv 

The prime on the second summation symbol in Eq. (92) indicates that it extends 
over nearest neighbors only. Further, nu = E~, is the #th site occupation number 
operator. The positive definiteness of the operator ~e ~, Eq. (93), results immedi- 
ately from the fact that for any physically reasonable parametrization of the PPP 
model, 7~ > 0. Thus, the OIP method can be directly applied. 

It is seen that the unperturbed part X '(°) is the Hiickel Hamiltonian. 
Therefore, the ground eigenstate tk~ °) of the Hamiltonian ~(o) represents the 
Hiickel solution for the system considered, i.e. the IPM single determinantal state 
4o, which is built from doubly occupied energetically lowest Hiickel orbitals. 
Excited eigenstates ~b~ °) are then obtained by single, double, triple, etc. excita- 
tions from the reference determinant 4o. Since we consider a closed-shell case, 
only singlet excited configurations need to be constructed, all other eigenstates 
¢~o) that are not singlets may be ignored. Obviously, eigenvalues g~o) of the 
Hamiltonian ~(o) are the appropriate sums of the Hiickel orbital energies, 
namely those associated with the orbitals occupied in q$~o). 

Following the OIP scheme, it remains to partition the solution space for the 
unperturbed Hamiltonian ~(o), Eq. (92), into the manifold ,,(o) which is • - ' ~ g  , 

spanned by ¢~o °) and some of the excited eigenstates of ~,~ff(0) [cf. Eqs. (73) and 
(74)], and its orthogonal complement /¢(0)_L Clearly, this can be done in a v . ~ g  . 

completely arbitrary manner. Since, however, we consider the application of the 
OIP technique to the quantum chemical model Hamiltonian ~ ,  Eq. (90), it is 
best to choose the relevant manifold d/~ °) as a linear span of the Hiickel solution 
@0 and all possible singlet spin-adapted mono- and biexcited configurations 
relative to @ 0. In this way, the summation over k in the definition of matrix 
A(g), Eq. (82), will extend over at most quadruply excited configurations relative 
to 4o, because the perturbation ~e', Eq. (93), i~cludes at most two-electron 
interactions. 

In some cases, for example, when quasidegeneracy becomes appreciable or 
stricter OIP lower energy bounds are required, it may be necessary to consider a 
larger manifold ~/<gO) that includes triply and quadruply excited configurations as 
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well (cf. Sect. 2). However, such an extension is hardly feasible, even for 
relatively small systems, in view of a large number of triple and quadruple 
excitations, even at the orthogonally spin-adapted level. We thus only consider 
the problem of evaluation of the OIP matrix elements A(8);j, Eq. (82), for the 
case when the manifold ~,<gO) is spanned b y ~ o  and all possible singlet spin- 
adapted mono- and biexcitations. 

We could now consider the general case of neutral conjugated hydrocarbons 
by transforming the second quantized expression for the perturbation ~ ,  Eq. 
(93), from an atomic to Hiickel molecular orbital (HMO) basis and by exploiting 
either the diagrammatic methods of the MBPT [8, 51, 52] combined with the 
graphical methods of spin algebras [38, 44, 106, 107] or algebraic techniques [53, 
108, 109] in order to calculate the pertinent matrix elements. Our intention, 
however, is to use the OIP formalism to determine lower energy bounds for the 
PPP model of cyclic polyenes with nondegenerate ground state, CNHN, 
N = 2n = 4v + 2, v = 1, 2 . . . .  [49]; this will be reported in Part III of the present 
series. To keep this presentation at a very transparent level, we focus our 
attention on the evaluation of the OIP matrix A(¢) for the case of cyclic 
polyenes, where the high symmetry greatly simplifies the considerations. These 
considerations, however, should give us an idea how the general case of neutral 
conjugated hydrocarbons might be treated, if necessary. 

The cyclic polyene model will be described in greater detail in Part II of the 
present series. Let us now only mention that in this case the atomic orbitals IP), 
# = 0, 1 . . . . .  N - 1, are localized on the vertices of  the regular N-gon. Conse- 
quently, general relations between one- and two-body parts of the electronic 
Hamiltonian H~, Eq. (84), Z and V, respectively, and the H/ickel Hamiltonian 
~¢0) and the perturbation ~ ,  Eqs. (92) and (93), respectively, i.e. 

~<0) = Z + ~, y,~n~,, (94) 

~ / f = V +  E ? ~ -  E T,~n~, (95) 
# < v  #~v 

can be simplified by the symmetry property, 

7,, = T~, + ~.~ + ~ = ?o,~ - ,, (96) 

where the indices are understood to be taken modulo N. We obtain 

where 

and 

# < v  / z<V 

/ l < V  / ~ < v  

(97) 

(98) 

ZN = ~ zu~N[E,v], (99) 
#v  

GN = ~ g~,~N[E~,v]. (100) 
ltv 

Here gv~ = (izlglv), where g = f -  z, and the normal product operation N[. • -] 
is defined with respect to the Hfickel solution #o. In view of the high spatial 
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symmetry of cyclic polyenes (Cu or DNh), the Hiickel molecular orbitals are 
completely determined by symmetry and they become simultaneously both the 
HF and Brueckner orbitals labeled by an appropriate quasimomentum (see, e.g., 
[35a] and Part II). Consequently, the Hiickel solution q~o is identical with the 
RHF ground state and all the monoexcited configurations relative to ~o may be 
ignored, since they necessarily belong to a different symmetry species than ~o 
itself. Moreover, because of the relation (97), the one-electron operator z is 
diagonal in the molecular orbital basis {]m)}. Therefore, all three one-body 
operators, f, z and g become diagonal in the basis {[m)} and Hiickel orbital 
energies ~m'HUO differ from eigenvalues ( m l z l m )  only by a constant factor [cf., Eq. 
(97)]. 

A further consequence of the high spatial symmetry of cyclic polyenes is a 
so-called zero quasimomentum rule, which has to be satisfied by molecular 
integrals (mnl[pq) ,  and all doubly, triply, etc. excited configurations (see, e.g., 
[35a]). In addition, the PPP cyclic polyene model possesses the hole-particle and 
so-called alternancy symmetries [35a, 50]. These symmetries enable drastic sim- 
plifications of the formalism. We do not exploit them here, however, since in 
this paper we wish to concentrate on those formal aspects of the OIP and CC 
theories that appear at a very general orthogonally spin-adapted level. They 
will be exploited in Parts II and III of this series. 

As already mentioned, we can ignore all singly excited configurations. We 
thus assume that the manifold dC(g °) is spanned by ~o and all possible orthogo- 

nally spin-adapted doubly excited configurations r ; ) s ,  Eq. (18), which we 

designate by ~ (i = 1 , . . . ,  M) as in Sect. 3. Then, Eq. (74) takes the form: 

gi = (~)i (i = O, 1 . . . . .  M) ,  (lO1) 

and the sum on the right-hand side of Eq. (82) can be decomposed into the 
three parts corresponding to summations over doubly, triply and quadruply 
excited configurations. Making use of the fact that [see Eq. (97)] 

B~o °) = (~o19~(°)1~o) = (~olZl~o) + 2 Z ~u~ = Jt~(°) - Zu, 
/~-<v 

and introducing a new parameter e defined as 

(102) 

(103) 

we now write Eq. (82) as 

" + 
A( )u = - t W i j  ( ) + 

where 

( i , j  = O, 1 . . . . .  M) ,  (104) 

% = ( 1 0 5 )  

Q (k) 
Wfff)(e) = (~,l~e" ~lt/ij) (k = 2, 3, 4). (106) 

e - Z N  

Clearly, evaluation of W}Z)(e) requires only the knowledge of the matrix 
elements ~/~o, Eq. (105), which have to be calculated anyway as indicated by 
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Eq. (104). Applying relation (98), one can find the following expressions, 

%0=( 01vl 0> - E (107) 
/2<1~ 

~0j=q/'~0=(O0lVN[Oj) ( j =  1 . . . .  ,M),  (108) 

% = (q~i I VNIOj ) + 6ij[(r[g[r) + (s[g[s) -- (a[gla) -- (blgIb) + 3~'oo ] 

(i, j = 1 . . . . .  M), (109) 

where r, s and a, b are, respectively, the particle and hole orbital labels character- 
\ 

izing the orthogonally spin-adapted biexcited state O~. = -~ar s )  b ~s/  Equations 

(107) and (108) immediately follow from Eq. (98). To get Eq. (109), we have to 

evaluate matrix elements / r :GN~ s )  s, G 5," The result is [43, 44] 

s 
s~ ( r b GNfi ~~lgi = Nr~bN~ fisig,[AaSb(Si)S~(Si)~9~z(Si)(r[g[~)(s[ ~) 

(iio) 
--A 

where we have introduced the new quantity 
r ~  Amn(S) = 6e.~.(S)(rn[r~ )(n[fi), (111) 

which will be particularly useful in the next section. If we also employ the fact 
that g is diagonal in the basis {[m)}, we get 

s s = NabN~s6s:iAab(S~)Ars(S~)[~rs (rig[r) - 6~ b (a[g]a)], 

(112) 
which is the desired expression, since [43, 44] 

represents the overlap integral (O;]Oj)=6ij.  We thus see the both ~:~j and 
W}Z)(e) can be simply evaluated using the two-body part of the D-CI matrix. 
Explicit expressions for 

can be found elsewhere [43, 44]. A simple diagrammatic rederivation of these 
expressions as well as of formula (110), that is based on the graphical methods 
of spin algebras, and employs Goldstone form for VN vertices, Fig. lb, and 
Hugenholtz (Brandow) vertices, representing orthogonally spin-adapted doubly 
excited states, Fig. It,e, is briefly outlined in the Appendix. 

Let us now concentrate our attention on the third and fourth terms on the 
right-hand side of Eq. (104), i.e. W~¢)(e) and W~)(e). Obviously, 

W(3)(e , . j , ) = W ~  )(e)=0 for i = 0  or j = 0 .  (114) 

Since in matrix elements of "/: between doubly and triply and doubly and 
quadruply excited states we can replace ~ by Vu (see Eq. (98) and note that for 
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cyclic polyenes all matrix elements <rlgla > vanish), expressions for W}~.)(e), 
k = 3, 4, i, j = 1 . . . .  , M, become 

a (3) 
= vN v,¢ >, (115) 

Q (4) 
W~)(e) = <,I, i lv~ e _--Z-~N VNI,I,j >. (116) 

We could, of course, compute these quantities in the same way as the component 
W~)(e), namely by generating first the matrix elements of the operator V~ 
between doubly and triply and doubly and quadruply excited configurations. 
Although this could, in principle, easily be done using similar algorithms to those 
of the CI matrix generation, it is more efficient to derive explicit expressions for 
W~)(e) and W}4)(a) in terms of two-electron integrals <ran IlPq >. In this way, we 
obtain expressions of the same complexity as the second-order MBPT (see Sect. 
5). 

We conclude this section by explaining briefly how to find the OIP lower 
bounds to the energy for cyclic polyene systems as described by the Hamiltonian 
~ ,  Eq. (90). To be consistent with Eq. (103), we slightly modify the original 
definition of the bracketing function f '(¢),  Eq. (80), and consider the new 
bracketing function f(e) defined as follows: 

M 

f(~) =-if(g) - g(o °) = ~ ~oi(a(~)-l)QVjo, (117) 
i,J=O 

where A(a) is given by Eq. (104). In this way, the fundamental equation of the 
OIP approach, i.e. Eq. (79), becomes 

f(8) = a. (118) 

By solving this equation, we get the OIP lower bounds to the eigenvalues of the 
operator (~t ~ - g~o)). Since we are interested in the determination of the lower 
bounds to the ground state correlation energy and since 8 corresponds to the 
eigenvalues of the total Hamiltonian ~¢Y, Eq. (90), we define 

Ag=g--ERI- IF--  ~, ?u*, (119) 
/ t < V  

where 

= < olH=l o> = < olZl o> + < olVl o>, (120) 

is the ground state RHF energy. From Eqs. (119), (120), as well as (102), (103) 
and (107), we immediately obtain 

A¢ = e -- 3V'oo. (121) 

Thus, subtracting V00o, Eq. (107), from the lowest root of Eq. (ll8),  we obtain 
the OIP lower bound to the correlation energy in the ground state of cyclic 
polyenes as described by the PPP model Hamiltonians H~ and ~ .  

To summarize, Eqs. (104) -(109), (114) - (118), and ( 121) respresent the set 
of working equations characterizing the OIP approach. The problems connected 
with their practical implementation, particularly' when higher cyclic polyenes 
(with N >t 14) are examined, are the subject of Part III of this series. Formally, 
the main difficulty is to evaluate the effective interaction matrix elements W[3)(e) 
and W}4)(e), Eqs. (115) and (116), respectively, between the orthogonally spin- 
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adapted biexcited singlet configurations b s," In Sect. 3 we have shown that 

very similar matrix elements [W~ ), Eq. (57)] are needed in the approximate 
account of triple excitations in the CC theory. In the next two sections we thus 
concentrate our attention on the derivation of general expressions for W}~ 3), 
W}~)(~) and W~)(e) using different diagrammatic procedures for spin-adaptation. 
We are not only interested in, the final result, but we also wish to find out which 
spin-adaptation procedure yields the most transparent and computationally 
appealing formulas. 

5. Diagrammatic evaluation of the effective interaction matrix elements 

We now turn our attention to the derivation of general expressions for the 
effective interaction matrix elements ,,;j'I:(3), W~)(e) and W~.~)(e), given by Eqs. 
(57), .(115) and (116), respectively, in terms of two-electron molecular integrals 
(ran [IPq). Since the matrix elements W~3)(e) and w~a)(e) of the OIP formalism 
and the matrix elements W~ 3), that occur in CCDT-1, ACPTQ and 
CCD + T(CCD) equations, only differ in the denominators (in the latter case 
they are given by the RHF orbital energy differences while in the former case 
they are given by appropriate differences of Hfickel orbital energies), it is 
convenient to define generalized effective interaction matrix elements as 

w,:  (~) = V N - -  V~ (122) 
s, ~ - O x  ~ s,' 

where k = 3 or 4, X = RHF or HMO, f2 RIaF = F ,  and f2 HM° = Z or o~ (°), Eq. 
(92) (recall that for the PPP model of cyclic polyenes z is diagonal in the HMO 
basis and Hfickel orbital energies e~ M° differ from (rnlzlrn) only by a constant). 
Clearly 

W -3) RHF(D] = W~ ), (123) i j  "..~i 

(3) HMO Wij (e) = W}3)(e), (124) 

(4)HMO W,j (e) = W~)(~). (125) 

Equation (122) is very similar to standard perturbation theory expressions and 
can be efficiently evaluated by applying time-independent diagrammatic tech- 
niques of MBPT [8, 51, 52], together with graphical methods of spin algebras 
[80, 81], to achieve spin-adaptation [38, 39,44, 106, 107]. In this section we 
follow the diagrammatic spin-adaptation procedure of [38], as outlined in Sect. 
2. As in [44], we employ ham (Goldstone) two-electron interaction vertices (el. 
Appendix), while orthogonally spin-adapted biexcited configurations are repre- 
sented by Hugenholtz vertices. In the procedure of [106] and [107], even 
two-electron interaction vertices are represented in a Hugenholtz form (and are 
referred to as spin-adapted interaction vertices [40]). We shall compare expres- 
sions derived in this section with those obtained with the procedure of [106] and 
[107] in the next section. 

In order to apply the diagrammatic procedure of [38] to the right-hand side 
of Eq. (122), we must first draw all possible nonequivalent nonoriented vacuum 
Hugenholtz skeletons that can be formed from two nonoriented Hugenholtz VN 
vertices and two similar vertices representing bra and ket doubly excited configu- 
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rations (cf. Figs. 1 and 2 of [34]). In the tetraexcited (k = 4) case, ,, ~j ~w, all 
lines from both vertices representing biexcitations must go across the interval 
separating the interaction vertices (cf. Fig. 1 of [34]), while in the triexcited 

w ( . 3 ) x r ~  only three lines from each biexcitation (and each two-elec- (k = 3) case, --v ,v,, 
tron interaction) vertex will go across, one being incident to the nearest interac- 
tion vertex (cf. Fig. 2 of [34]). This is a consequence of the presence of the 
reduced resolvent-type operator Q e ) / ( e  - f2 x) (k = 3, 4) in Eq. (122) (see, e.g., 
[51, 52]). Once all the arrowless Hugenholtz diagrams are drawn, it is easy to 
introduce orientation and labeling of lines in all nonequivalent ways (recall that 
bra and ket vertices must also carry labels St and g~, respectively). All the 
unlabeled resulting Hugenholtz diagrams corresponding to Eq. (122), both 
nonoriented and oriented, can be found in Figs. 1-5 of [34], where a special- 
purpose diagrammatic spin-adaptation procedure, that is not based on the 
graphical methods of spin algebras, was employed. Note that these diagrams can 
be brought into a one-to-one correspondence with the diagrams for the second- 
order effective Hamiltonian matrix elements [110] or with the fourth-order 
MBPT diagrams by regarding all four vertices as equivalent [34]. 

Following the procedure of [38], it thus remains to draw all nonequivalent 
Goldstone-Hugenholtz diagrams by replacing Hugenholtz V~v vertices with 
Goldstone ones, Fig. lb, and by performing an "exchange" operation on each 
bare interaction vertex, starting with any Goldstone-Hugenholtz representative 
(see, e.g., [38, 51, 52]). These resulting Goldstone-Hugenholtz diagrams are 
shown in Figs. 7-9. Diagrams in Fig. 7 correspond to W } 4 ) x ( e ) ,  whereas those in 
Figs. 8 and 9 correspond to W}3)x(e). Distinct Goldstone-Hugenholtz diagrams 
that are associated with a given Hugenholtz diagram are grouped together. Since 
we wish to compare our results with the expressions of [34], diagrams in Figs. 
7-9 are ordered in the same way as diagrams in Figs. 3a-i, 4a-h  and 5a-h of 
[34]. Thus, Fig. 7 x ,  x = a - i ,  and Figs. 8x and 9 x ,  x = a - h ,  of this paper 
correspond to Figs. 3x, 4x, 5x of [34], respectively. For example, Fig. 8c shows 
two distinct Goldstone-Hugenholtz diagrams that are associated with Hugen- 
holtz diagram 4c of [34]. In the case of Hugenholtz diagram 5b of [34], four 
distinct Goldstone-Hugenholtz representatives, given in Fig. 9b, can be con- 
structed, etc. The reason for splitting up the triexcited diagrams, w(.3 . )x¢~ into 
the two sets (Figs. 8 and 9) is given in [34]. Recall that these two sets are 
structurally related when the Hugenholtz representation is employed, namely, 
they may be transformed one into the other by interchanging the role of one 
biexcitation vertex with its nearest interaction vertex [34]. In other words, in the 
Hugenholtz representation, they correspond to different time versions of one set 
of diagrams [51, 52]. 

In Figs. 7-9, a Brandow representation is assumed, i.e., each Hugenholtz 
vertex representing bra or ket orthogonaUy spin-adapted configuration is re- 
placed by its Brandow version. However, Brandow vertices representing 

/ r s  I ~ g  \ . 
( . and I~ r ) ,  Fig. le and c, respectively, are not drawn explicitly. 

s,  \ a  O l l a  o / g .  
, i . " ' " " D Instead, as in tile diagrams corresponding to the orthogonally spin-adapted CC 

equations, Figs. 2-4, all external lines are labeled by the fixed orbital indices 

characterizing bra and ket states s~(r ; and I; ~ )  ' respectively' a n d a  ~ ~, 

distinct labeling schemes carried by external lines are indicated by the symmetriz- 
ers ~b, Se~, ~G and 6@ In this way, Goldstone-Brandow diagrams of Figs. 7-9 
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are much more transparent than they would be if all the vertices were explicitly 
drawn. Following the notation of Sect. 2, the remaining internal particle and 
hole lines (between interaction vertices) are labeled by summation indices k' and 
k", respectively, k = 1, 2 , . . . .  

To obtain an algebraic expression that is associated with each Goldstone- 
Brandow orbital diagram of Figs. 7-9, we have to multiply the corresponding 
orbital and spin factors and sum over all free orbital labels [38] (intermediate 
spin quantum numbers are fixed labels in this case). However, the sign rule given 
in Eq. (37) of [38] requires a slight modification when applied to diagrams of 
Figs. 7-9, where neither bra nor ket state vertices are shown explicitly. Thus, to 
obtain the number of closed loops (l) and the number of internal hole lines (h), 
that determine the sign factor ( -  1) ~+h [8, 51, 52], we have to join all the external 
lines of our orbital diagrams with those of diagrams representing bra and ket 
states, Fig. le and c, respectively, while regarding them as internal lines. 

As mentioned in Sect. 2, the appropriate spin coupling coefficients are 
evaluated by applying graphical methods of angular momentum theory 
[22, 80, 81]. Thus, we have to draw the spin diagrams associated with orbital 
diagrams of Figs. 7-9. They are very simple and can be immediately obtained by 
interconnecting the appropriate lines of spin diagrams representing bra and ket 
states, Fig. If and d, respectively, since in bare-interaction approach of [38], 
two-electron interaction vertices do not enter the resulting spin diagrams. 
Consequently, there is no need to present them here. 

We can easily verify that a one-to-one correspondence between the sym- 
metrizers ~b,  ~ ,  ~ g a n d  ~ in the orbital diagrams and the (anti)symmetrizers 
~b(S~), ~ ( S ~ ) ,  ~G(S~) and 5e~(tT~), respectively, in the associated algebraic 
expressions, which was emphasized in the context of the CCSD theory in [40] (of. 
Sect. 2), also holds for the Goldstone-Brandow diagrams of Figs. 7-9. Conse- 
quently, the easiest method to obtain algebraic expressions that are associated 
with orbital diagrams of Figs. 7-9  is as follows: evaluate and combine orbital 
and spin factors corresponding to a given orbital diagram, in which the sym- 
metrizers are ignored, and then assign the operator ~b(S~) to ~b,  ~ ( S j )  to ~ ,  
5:~(S,-) to 5:~b-, and 5e~(S,-) to 5:~. In this way, the following compact expressions 
for the effective interaction matrix elements (k)x W;j (e) (k = 3, 4), Eq. (122), can be 
derived 

where 

(k)x Wij (~) = Z R~)(x), (126) 
x 

while 

and 

N,bNng ~ ~4(x){v4(x)[e - A4(x)]-l} (x = a- i ) ,  (127) 
{rr'} 

R}¢)(x) = R~)'(x) + R~)"(x) (x = a-h),  (128) 

R~),(,,)(x) = N~bNP~ 6 ~ ~,(,,)(x){v,3(,,)(x)[t _ A ~(,,)(x)]--1}. (129) 
(rr} 

Clearly, x designates the resulting Goldstone-Brandow orbital diagrams of Figs. 
7-9. Thus, Rij(4)(x)," x = a- i ,  R~3)'(x) and R(3)"t---i: ,:~), ~ x = a-h ,  are the algebraic 
expressions associated with Figs. 7x, x = a- i ,  8x and 9x, x = a-h ,  respectively. 
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Fig. 7a- i .  Golds tone-Brandow orbital diagrams representing the effective interaction matrix ele- 
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(x = f )  Golds tone-Brandow representatives that can be associated with each oriented unlabeled 
Hugenholtz diagram, Fig. 3x of  [34] (see text for details) 
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Fig. 8a-h. Goldstone-Brandow orbital diagrams contributing to the effective interaction matrix 
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Since Golds tone-Brandow diagrams of  Figs. 7 -9  and their counterparts in [34] 
are ordered in the same way, one can easily identify contributions R}4)(x), R~)'(x) 
and o),, Rij (x), Eqs. (127) and (129), with the corresponding terms defined in [34]. 
According to the labeling convention introduced in Sect. 2, sums in Eqs. (127) 
and (129) extend over an appropriate set of  hole (l') and/or particle (l") labels. 
The numerators v4(x) and v'3(")(x) are given by products of  two-electron integrals 
(rnn [[pq), Eq. (36), (ran [[Pq)s, Eq. (37), or (rnn []Pq)a, where 

( mn [[pq )a -~" 2 ( mn HPq ) - ( rnn ][ qp ), (130) 

A,nn(S), Eq. (111), and spin Kronecker delta symbols (rain) and/or quantities '~a 
coupling coefficients. The denominators Ak(x) =-- Ax(1 ", 2 " , . . . ,  r, s; 1', 2', . . . .  
a, b), k = 3, 4, X = RHF,  HMO, are given by the R H F  (X = RHF)  or Hfickel 
(X = HMO) orbital energy differences, 

AX(l", 2 " , . . . ,  r ,s;  1", 2', . . . .  a,b) = ~ x + e x  + . . . + e  x 

+ e x - e x - e x  . . . . .  eaX-e x, (131) 

and the "symmetry forcing" projection operators ~4(x), ~ ; ( x )  and ~ ( x )  are 
the appropriate products of  the (anti)symmetrizers ~eab(S;), ~ ( S ; ) ,  ~b'(~i) and 
~(si). 

For the numerators v4(x) associated with diagrams in Fig. 7a- i  we get the 
following expressions: 

¢~ ~G 1' ' " " " " ' ' v4(a ) = ¢~s, g Ars(Si)Aab(Si)( 2 111 2 ) (1  2 Ill 2 )~, (132a) 

I) 4 (b) = -- 6s, g A 3S,-) (b  1/~)( 1'~ 111"2")(1"2" [[l'a)a, (132b) 

114 (C) = - -  6 S i ~ i A  aa~b(Si ) (S IS)(1'2' [I V'f)( l " r  I[ 1'2')., (132c) 

v4(d  ) ~s "~ 1 .... 1 .... = 6s~Ar~(S,.)(abl] 2 ) (  2 I[ab)s~, (132d) 

114 (e) = 6s3f l  ~ag(S~ ) ( 1'2' II [[1'2'"/s,, (132e) 

v4( f )  = L ] m ( ( l ' J l ] l " t ' ) ( l " r i ] l ' a ) ~  

- ( l '~ l ]? l" ) ( l "r l l l 'a ) )  +rs,~,( l '~l l?l")( l"r l lal ' )  }, (1320 

= 1 S v4(g ) --~[ ~, S,]l/e(slg)(~ll f l")~,(rl"][ab)s ,, (132g) 

v 4 (h) = - ½[Sg, ~;] m(b  Ib) (~ 1" ]1 ~ ) ~  (rs 11 a l ' )s , ,  (132h) 

v4(i) = [Si, ~ ]  m(~/~[[?g)~, (rs [[ab)s. (132i) 

The corresponding denominators A4(x) are given by 

A4(x) = AX(u~, u~, r, s; c~, c~, a, b) (x = a- i ) ,  (133x) 

with the orbital labels listed in Table 1. The projection operators ~ ( x )  have the 
form 

~4(X) = ~ a b ( S i ) k ~ b ~ i ) ~ 2 2 ~ r s ( S i ) k ~ 3 ~ ° ~ ( S i )  1~4 (X = a-i ) ,  (134x) 

with k7 (i = 1-4), that are either 0 or 1, also listed in Table 1. Note that 
~4(a) = ~4(d)  = N4(e) = ~4(i) = 1. We recall a simple relationship between the 
diagrams of  Fig. 7 due to p - h  symmetry, namely between 7b and 7c, 7d and 7e, 
7g and 7h, that is reflected in the corresponding algebraic expressions: particle 
(hole) lines and the corresponding orbital labels are replaced by hole (particle) 
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Table 1. Orbital labels and parameter values that determine 
A4(x ) and the projectors ~4(x), x=a- i ,  Eqs. (133x) and 
(134x), respectively 

x u~ u~ c~ c~ k~ k~ k~ k l  

a 1" 2" 1' 2' 0 0 0 0 
b 1" 2" 1' ~ 1 1 0 0 
c 1" ? 1' 2" 0 0 1 1 
d l" 2" ti ~" 0 0 0 0 
e ~ ~ 1' 2" 0 0 0 0 
f 1" ? 1' ~ I 1 1 1 
g 1" ~ a ~" 0 0 1 1 
h ~ ,~ 1' a 1 1 0 0 
i ~ ~ ,~ ~ o o o o 

lines and labels, respectively, according to the following scheme 

r(a) -+ a(r), s(b) --+ b(s), ~(a") --+ d(r"), ~ ( ~  -+ G(s"), 1"(1') --+ 1'(1"), 2"(2') ~ 2'(2"). 

In the formulas for the numerators v4(x), two-electron integrals must be also 
replaced by their complex conjugates. Clearly, diagrams a, f and i of Fig. 7, and 
the associated algebraic expressions for R}4)(a), R~4)( f )  and (4) • Ro 0), respectively, 
are p - h  selfconjugate. 

For  the triexcited case, W}¢)x(e), the numerators v'3(x) and vg(x), x = a - h ,  
corresponding to diagrams of Figs. 8 a - h  and 9a -h ,  respectively, can be written 
as follows 

v'3Ca) = as.~,A~a~CS,)<slg><l'r II 1"2")(1"2" II l '~)a, (135a) 

v'3 (b) = as,~,A ~ (S,)  (b  1/7) ( 1'2' II l"a ) ( l"d 111'2')a, ( 135b) 

v'3(c) = ( s lg ) (b lg ) (dr[ [ l "2" ) (½[S ,  S,]'/Z(l"2"l]~a) - as,& (l"2"Ha~) }, (135c) 

v'3(d) = (blg)(slg>(l '2"[l~a){½[Si,  g~]~/z(&lll '2") - 6s,~,(drll2"l'>}, (135d) 

v'3(e) = 6 s , ~ , A ~ ( S , ) ( ( l ' r l l l " y ) ( l " s l [ l ' ~ > ,  - ( l 'r l l~l"><l"sll l 'g>s,) ,  (135e) 
= n I 'd - V'a(f) 6s ,&A~,(S , ) ( (  ] l l"a>(l"g][l 'b)a <l'a[lal"><l"Glll'b>s ), (1350 

v'3(g) = -- ( s l ~ ) (  b l~){  a&g,( ( l" r [I l "~) ( l "d  II l 'a)~ 

- <l'rll~t"><l"a[ll'a>) + l [ s .  L]~/Z<rrll~v'><l"a[lat'>}. (135g) 
v~(h) = - <b 15><~l~>{as~(< I'd II l"a)(l"r II t'~>a 

-- <l'al[a1"><l"~ II1'~>) + ½[S,, L]'Xt'allal"><l"rll~l'> }, (135h) 
v~Ca) = (ala>{½tS,, ~,1'/2C<~r Ilel"><l"s limb>,, 

+ ( -  1)x'<~rl[l"~><l"s][~b > ) - ( -  1)*'a.,m, (Erlll"~><l"sllb~> }, (136a) 
v~(b) = (rlF){½[S;, L]  ' /2 ( ( l 'g[ lag) (  ds II l ' b ) s ,  

+ ( - 1) & <l'gl[ga><ds ]] l 'b>) - ( - 1)S'6s;g, < l'~'ll~a ><ds lib 1'>}, (136b) 

vg(c) = <sl~><l"gilab >s, Cas,.¢, <dr II 1"~> - ½is,, g,l'/=<ar II~l">), (136c) 
v; ca) = <b Ig> <~* I[ l'g>,,Cas, u, < l'a II ~a > - "tS,, &l ,a< I'd II ae>), C 136d) 
v~(e) = ( a l a ) (  l 'r  II~>~,(as,~, <& H b 1') -- ½[S~, &l ~/2( ~s II l 'b >), (136e) 
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v '~ ( f  ) = ( r [ ~ ) ( a ~ H a l " ) & ( a s i g , ( l " s [ l b ~ )  - 'i[S,, S, l l /2( l"s l lgb )) ,  

I S v~(g) = - ~ [  ,, g,l ' /=(Ss][ab )s ,  (rSIJe~)g,, 

v~ (h)  = - - l [ S i ,  ~ 1  l / 2 ( r s  [[Fb >s, (ag[[aa>g.. 

The corresponding denominators are defined as 

A ' 3 ( x ) = A X ( u l  x , u : , s ; c ,  , c 2 , b )  ( x = a - h ) ,  

x t  . . . . .  * ,x c~*, b) (x  = a - h ) ,  A'~(x) = A ~U 1 , U  2 , S ;  C l , 

and the projectors as 

105 

(1360 

(136g) 

(136h) 

(137x) 

(138x) 

(x  = a - h ) ,  (139x) 

(x = a -h) ,  (140x) 

with the orbital labels u~ ~, etc., and the parameters k~ ~, etc., listed in Table 2. 
Again, simple relationship between the p - h  conjugate diagrams of  Figs. 8 and 9, 
namely a and b, c and d, e and f, g and h is reflected in the corresponding 
algebraic expressions, Eqs. (135)-(140). 

Equations (126)-(129) together with Eqs. (132)-(140) represent the com- 
plete set of  formulas for the matrix elements W~.~)x(e) of the effective interaction 
operator 

Q (k) 
W(k)x(e) = Vu  ~ Vu.  (141) 

Since the operator w(k)X(e) is Hermitian (as long as ~ is real), the corresponding 
M × M matrix W~k)x(e) = II W~)X(e) IJ, <. ~,J <. ~ between orthogonally spin-adapted 

Table 2. Orbital labels and parameters defining the denomina- 
tors A'3(x), A~(x) and projectors ~ (x) ,  ~ (x ) ,  x = a - h ,  given 
by Eqs. (137x), (138x) and (139x), (140x), respectively 

x u~ x u~ x cV c~ x kl ~ k~ x k~* k~ x 

a 1" 2" 1" a 0 0 1 1 

b 1" r 1' 2" 1 1 0 0 
c 1" 2" a ~ 1 1 1 1 
d r F 1" 2' 1 1 1 1 
e 1" ~ 1' a 0 0 1 1 
f 1" r 1" ~ 1 1 0 0 
g 1" ~ 1" a 1 1 1 1 
h 1" r I '  ~ 1 1 1 1 

x ui x u7  c7 x c~ x kV  k 7  k 7  k~ ~ 

a I" ~ a ~ 1 1 1 1 
b r ~ 1" ~ 1 1 1 1 
c 1" ~ a 5 0 1 1 1 
d r ~ 1' ~ 1 1 0 1 
e F ~ 1' a 1 1 1 0 
f 1" r ~t ~ 1 0 1 1 
g F ~ a ~ 0 1 1 0 
h r ~ ft ~ 1 0 0 1 
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doubly excited configurations must be Hermitian, 

w ( k ) X ( e ) ~ f  = w ( k ) X ( e ) .  (142) 

From explicit expressions for the numerators Vk(X), denominators Ak(X) and 
projection operators ~k(X), Eqs. (132)-(140), it follows that most of the 
individual contributions R~)(x) to W~k)X(e) satisfy the Hermitian property 

R ( k )  X R)~)(x) * =  -~tj ( )- (143) 

One can easily check that Eq. (143) holds for all the contributions except for 
R~3)'(g), R~3)'(h) and R~3)"(x), x = c -h .  The fact that Eq. (143) is not satisfied by 
all the components R~.~)(x) does not, however, affect the Hermiticity of the matrix 
w(k)X(e), Eq. (142). Careful inspection of Eqs. (135g), (135h), (136c)-(136h), 
(137g), (137h), (138c)-(138h), (139g), (139h) and (140c)-(140h) shows that 
expressions corresponding to diagrams in Fig. 8g and h, Fig. 9c and f, d and e, 
and g and h form Hermitian-conjugate pairs, i.e., 

R~3)'(g) = R(.3)'th~* 
- ~ J l  \ ' ' ]  ' 

R(3)"(e) - -  R (3) ' ,(  /" )1 * 

R(3.)"(d) = l~(.3.)',(a~* 
lJ ~.-- / - ' J l  ~.~ : , 

R(.3)"(o,~ = R(?)" (h~* 
IJ \ 0 1  - -  ~Jl K' ' I  " 

(144) 
(145) 
(146) 
(147) 

Consequently, when all the individual contributions R~)(x) to W~k.)x(e) are 
summed up, the Hermiticity of the resulting matrix W(k)X(e) will be automatically 
assured. 

From Eqs. (127), (132a), (133a), (134a) and (113), it follows that R~¢)(a) 
vanish for i # j .  In other words, matrix R(4)(a)= [[R~)(a)[[~ ~<,.j~<~t is diagonal. 
Similarly, several other matrix elements R~k)(x) vanish when certain relations 

between the biexcited configurations ~ i =  a n / s ,  "~ s ~j=[r~ s~,) a r e n o t s l  

satisfied. Additional simplifications in general spin symmetry adapted expres- 
sions for W~k)x(e), Eqs. (126)-(129) and (132)-(140), are possible when other 
symmetries ~tvailable for a given molecular system are exploited. We shall not, 
however, discuss the problem of symmetry adaptation of Eqs. (126)-(129) and 
(132)-(140) here. Instead, in the last section of the present paper we concentrate 
on another important aspect of the spin-adaptation formalism, namely, compari- 
son of different procedures for spin-adaptation. The problem of exploitation of 
other than spin symmetries will be discussed in greater detail in Parts II and III 
of this series, where general expressions (126)-(129) and (132)-(140) are used 
to compute the effective interaction matrix elements ,i,(3). W~)(e) and (4) W;j (~), r r i j  . 

Eqs. (57), (115) and (116), respectively, for the highly symmetric PPP model of 
cyclic polyenes. 

6. Comparison of different diagrammatic procedures for spin-adaptation 

In the preceding section, we have applied the spin-adaptation procedure of [38] 
to derive explicit expressions for the matrix elements w(k.)xt,~ Eq. (122). This ~ / j  \ v / ,  

procedure relies on a spin independent form of the Hamiltonian, Eqs. (1)-(4), 
and the respresentation of the two-electron interaction operator VN by bare 
vertices shown in Fig. lb. Since these vertices do not enter the resulting spin 
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diagrams, spin graphs appearing in the applications of the bare-interaction 
approach [38] usually contain a small number of nodes and thus are easy to 
evaluate. This main advantage of the method of [38] is, to some extent, lost 
when, like in the case of the matrix elements W(k)X¢"~ it is necessary to consider ~ / j  \ v ] ,  

a relatively large number of orbital diagrams due to the fact that the two-body 
part of the Hamiltonian is represented by Goldstone-type vertices. 

The bare-interaction technique [38] was formulated in the context of CC 
theory. Since the CC equations are linear in VN (cf. Eqs. (14) and (15)), the 
number of the resulting Goldstone-Brandow orbital diagrams is not much larger 
than the number of Hugenholtz diagrams [40] (at most two distinct Goldstone- 
Brandow representatives may be associated with each Hugenholtz diagram). 
However, in the present article we are dealing with the perturbation theory-like 
expression (122), which is quadratic in IN. Consequently, up to four distinct 
Goldstone-Brandow representatives may be associated with each Hugenholtz 
diagram of [34] (cf. Figs. 7f, 8e-h, 9a,b). To reduce the number of diagrams, 
which have to be explicitly considered to evaluate the right-hand side of Eq. 
(122), we may apply an alternative diagrammatic spin-adaptation procedure 
proposed by Mukherjee and Bhattacharya [106] and Mukhopadhyay [107]. This 
technique was specially designed to evaluate highly nonlinear expressions in the 
two-electron interaction operator appearing in higher orders of the MBPT. An 
essential feature of this approach is an intermediate spin-adaptation (or pre- 
adaptation) of the two-body component VN of the Hamiltonian HN, Eq. (2), so 
that Eq. (4) now becomes 

1 
= ( ~ l ~ m ,  ~0" n [ S o ' ) ( ~ f f p ,  lo 'q  [Sa>N[e,n,,,,p,p ena,,,q%], 

~7 ~r n 
s ~aq ~ (148) 

where the unitary group generators e,,,,,,,,, are defined as [53] 

e,,,,, m .... = X~,,, X,,,,. (149) 

Consequently, operator VN can be represented by a Hugenholtz-type orbital 
diagram shown in Fig. 10a, or by its Brandow version given in Fig. 10b. 
However, in contrast with the Goldstone representation (bare-interaction ver- 
tices), the spin-adapted orbital vertices (Fig. 10a,b) are accompanied by a 
nontrivial spin diagram shown in Fig. 10c; this spin diagram is a graphical 
representation of the product of Clebsch-Gordan coefficients together with the 
summation over (r appearing in Eq. (148). On the other hand, when constructing 
the resulting orbital diagrams, we can now employ Hugenholtz-type representa- 
tion for both FN (GN) and VN vertices, as well as for vertices representing 
excitations and (in the case of the CC theory) cluster operators Tj. This feature 
of the spin-adaptation technique of [106] and [107] is very desirable, especially 
for the MBPT-type expressions, since Hugenholtz diagrams are fewer in number. 
The latter must be represented in Brandow form so that we can determine the 
orbital phase factors. In either approach, Brandow representation is also re- 
quired for the construction of pertinent spin graphs, which are then evaluated 
using the graphical methods of spin algebras (cf. Sect. 2). 

Now, while the use of spin-adapted interaction vertices [106, 107] reduces the 
number of diagrams that must be considered, it simultaneously yields more 
complicated spin diagrams than the bare-interaction technique [38]. Mukherjee 
and Bhattacharya [106] and Mukhopadhyay [107] applied their method to the 
MBPT equations, obtaining very compact and formally appealing results 
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Ca) (b) 

1 

5o'. - ~  
(e) 

Fig. 10a-e. Diagrams representing the spin-reduced form of the operator V~, Eq. (148): a represents 
spin-adapted Hugenholtz-type orbital vertex, b its Brandow version, and e the corresponding 
3-jm-type spin diagram 

[106, 107]. Since the right-hand side of Eq. (122) is reminiscent of the standard 
MBPT expressions, it is of interest to try out this approach for the matrix 
elements (k)x W U (e) (k = 3, 4) and compare the results with those in Sect 5. So far, 
a relationship between the two different versions of diagrammatic spin-adapta- 
tion employing either bare or spin-adapted interaction vertices was only exam- 
ined in the context of the CC theory [40]. In this section, we wish to obtain a 
more complete picture of this relationship by comparing both spin-adaptation 
techniques for the perturbation theory-like expression (122). 

In Figs. 7-9 distinct Goldstone-Brandow orbital diagrams that are associ- 
ated with a given Hugenholtz diagram are grouped together. Thus, the decompo- 
sition of (k)x Wij (e) into individual terms R~)(x), Eq. (126), as well as general 
expressions for (k) Rij (x), Eqs. (127)-(129), will remain unchanged when the 
spin-adaptation procedure [106] and [107] is applied. Likewise, explicit expres- 
sions for the denominators Ak(x), Eqs. (133), (137) and (138), and projection 
operators ~,(x),  Eqs. (134), (139) and (140), will remain unchanged. Only 
expressions for the numerators vk(x) will differ from those given in Sect. 5, since 
both spin-adaptation procedures yield different spin factors. Thus, only numera- 
tors need to be considered. For the sake of brevity, we restrict ourselves to a few 
representative cases. 

It is easily seen that spin-adaptation techniques of [38] and [106, 107] 
yield identical or almost identical expressions for the contributions (4) R U (x), 
x = d, e, g- i ,  R~)"(g) and R~})"(h). This is immediately obvious in view of 
the discussion given in [40], since the Goldstone-Brandow diagrams of Figs. 
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7d,e,g-i, 9g,h have no distinct exchange versions so that in each case 
the corresponding Hugenholtz diagram is uniquely represented by only one 
Goldstone-Brandow diagram. Thus, to appreciate the difference between the 
two versions of diagrammatic spin-adaptation we consider those contributions 
R~k.)(x), which correspond to several Goldstone-Brandow diagrams, namely 

~4) (3)/ (3), (3), (3), (3)n " R ,  ( f ) ,  R ,  (a), Rei (c), R n (e), R~j (g), and R n (a). Figure 8a and c corre- 
sponds t o t h e  com-ponents-R~)'(a) and R~)'(c),-respectively, and contain two 
Goldstone-Brandow diagrams each, while each of Figs. 7£ 8e, g and 9a contains 
four distinct Goldstone-Brandow diagrams. Using spin-adapted interaction 
vertices [106, 107] we can replace all these diagrams by Hugenholtz-like orbital 
diagrams shown (in Brandow representation) in Figs. 11, 12a,c,e,g and 13. 
Combining orbital and spin factors associated with Brandow diagrams of Figs. 
11-13, we then obtain the following new expressions for the numerators v4(f) ,  
v'3(x), x = a, c, e and g, and v'~(a), 

Y 4 ( ~ )  = [Si, ~i]1[2(sIs>(bl b-> E [s1, S2]R(Si, ~i, 81, s 2 )  
sis 2 

× II <l'a II (15o) 

v'3 (a) = ¼6s,;~A ~g(Si) (s 15) ~ IS] ( l 'r II l"2")s ( 1"2" IIl'F)s, 
S 

(151a) 

v'3(c) = ½[S~, ~]  1/Z(slg)(blg) Z [S]C(S,., ~., S)(ar IJ l"2")s (l"2"ll~a)s, (151c) 
S 

v'3(e) = 6s, geA~(St) ~ IS 1, S2]C(S~, S ~, S2)(l 'rl l l"F)s~(l"s I]l'5)s2, (151e) 
S1S2 

v~(g) = -[S, ,  Si]l/2(sl~)(bl~) ~ [S 1, S2]W(S,, Sg, S 1, S 2) 
SIs2  

× < l 'r  [ll"r>s, ( 1"~ IIl'a >s2, (151g) 

v~(a) = [Si, ~.]'/2(al~) ~ IS 1, S2]W(S 2, Si, ff~, Sl)<Grll l") , (l"sllFb 
sis2 (152) 

where C is a 9-j symbol defined by Eq. (32), while the coefficients R and W are 

ltt 

s g Fig. 11. The Brandow form of the Hugenholtz- 
like orbital diagram corresponding to the four 
Goldstone-Brandow diagrams of Fig. 7f 
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,S < ~, 
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Fig. 12. Brandow orbital diagrams of [106] and [107] corresponding to Goldstonc-Brandow 
diagrams given in Fig. 8a,c,c,g 

s' 
r 1" . ~  

I 

g a > 

Fig. 13. Brandow-typc orbital diagram of 
[106] and [107] representing four Goldstone- 
Brandow diagrams shown in Fig. 9a 
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two different types of 12-j symbol of the second kind [80, 81], namely 

and 

' , ½] R(xl, x~, x~, x,) = x l x 2 x ~ x ~  
1 1 
2 2 

053) 

1 I 1 T l f  g yvr V X Y 1 L r  "~ (154) 

The 12-j symbol R, Eq. (153), was introduced in [40] and can be regarded as a 
higher-order analogue of the 9-j symbol C. For example, both C and R are 
highly symmetric in their indices [39, 40]. The coefficient W has lower symmetry 
than the coefficient R. Symmetry properties for both R and W can be easily 
deduced from the general symmetry properties of the 12-j symbol of the second 
kind [80, 81]. 

Expressions (150)-(152), except for Eq. (151a), involve genuine 9-j and 12:/ 
coefficients that cannot be expressed as products of simpler 3n-j symbols, since 
each pair of spin-adapted two-electron interaction vertices enters a spin dia- 
gram adding four nodes to it. Consequently, each of the spin graphs that is 
associated with diagrams in Figs. 11-13 (as well as with remaining contribu- 

R(k)(x tions -- i j .  )) contains 8 nodes and 12 lines. As follows from Eqs. (150)-(152), 
only some of these spin graphs are separable over n ~< 3 lines [22, 80, 81] and 
factorize into products of simpler 3n-j coefficients. Let us recall that each of the 
spin diagrams corresponding to Figs. 7-9 contains only 4 nodes and 6 lines. It 
must be remembered that each of Eqs. (150)-(152) is a single algebraic 
expression representing several (two or four) distinct Goldstone-Brandow dia- 
grams. As may be seen from Eqs. (132), (135) and (136), expressions that are 
associated with Goldstone-Brandow orbital diagrams, which are exchange 
versions of one another, usually differ by spin coupling coefficients. Thus, to 
combine them together and represent them by a single formula, we must 
introduce appropriate angular momentum recoupling coefficients. This gives 
another explanation of the presence of 9-j and 12:/ symbols in Eqs. (150)- 
(152) (of., Sect. 4 in [40]). 

Let us now compare explicit expressions for R~)( f ) ,  R(s),(,.~ ..~/ x-j, x = a, c, e, g, 
and R(.3.)"ta~ as derived in this section, with the corresponding results obtained 
in Sect. 5. First, we must expand Eqs. (150)-(152) in terms of non-symmetric 
v-matrix elements (ran IJPq> [40]. This gives 

v , ( f )  = IS,, L]l/=<~l~><blG>~<l"rll l'a><l'all l"e> E [ S1, S2]R(S,, L, S', S =) 
( S 1 S  2 

+ ( l"r  lia 1'>(1'~ I[ I"F> E (--1)sl[ S1, S2]R(St, L ,  S t, S 2) 
S I S  2 

+ <l"r l(l'a ><1'~ Fl"> E (-1)~[ S', S21R( S. L, 51, S 2) 
$ 1 S 2  

+ <l"r Ilal'><l'~ll~l"> E (-1)~'+~[s1, s2]e(s,, ~,, S1, S~)~, (155) 
S 1 S 2  ) 
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v'~ (a) = 

v'~(c) = 

v'3(e) = 

1 ab" S { ' 1"2 . . . .  2" 1'" # s , ~ A a ~ ( S , ) < s  I > Orl} ><1 II r>Zis] 
S 

+ <l'r II 1"2"><1"2"11 ~r > Z~ ( - 1)~[s]}, 

IS,, ~]'/2<sl~><blE>{<5r [I l"2"><l"2"]]Fa> Zs [SIC(S,, S,, S) 

+ <ar I[ l"2"><l"2"l]ar) ~s ( -  1)sis]c(si' ~i, S)}, 

aE { , ,, ~ ,, 6s,~,A,b(S,) <1 rill ><1 sill'S> ~ [Sl, S2]C(Si, S I, S 2) 
SIs 2 

+ ( l ' r  I [ F l " > ( l " s  [] l 'g>  Z ( -- I)~'[ S', s~]c(s,, s' ,  s ~) 
SIs 2 

(156a) 

(156e) 

v~(g)  = 

+<l'rl l l"r><l"s I] }l'> Z 
S1S 2 

+<l'rl lr l"><l"s Ilsl'> E 
8182 

- i s , ,  £]'/~<sl~><b 1~'> 

( - I) s~[s ', S2]C(S. S', S 2) 

( - I )  st+ s~[s', S2]C(S. S', S~) ~, 
) 

{ (l'r]ll"r)(l"5]ll' a) Z IS', S:IW(S,, S,, S', S 2) 
SIs 2 

+<l'rl]~l"><l"5]]l'a> Z (--l)Sl[sl '  S2]W(S i ,  Sl ,  S1, $2) 
SIS 2 

(1560 

+ < l 'r I] 1"~>< 1"5 Ila 1'> 

+ < l 'r ]]~ 1">< 1"5 ]la 1'> 

( - 1)~[s ' , s:]w(s , ,  g,, s ' ,  s ~) 
8182 

E (--I)SI-'}'S2[SI' S2]W(Si'~ g,, Sl, $2)} , 
SIs 2 

v~(a) = iS,, S']l/2(a]5){ (ffrligl')(l's]l~b ) s,s2 ~ [Sl' $2]W($2' S,, ~,, S') 

+<Er]il"g><l"s][~b> ~ ( - 1 ) s ' [ s  1, S2]W(S 2, S,, St, S') 
SIs2 

(156g) 

Mff<~rllsln>< lttsl{b~> E ( - - 1 ) s 2 [ S l ,  821W(82,  Si,  ~i,  Sl) 
s i s  2 

+<Er][l"g><l"s[]bT> ~ (-1)s~+s2[s~,s2]w(sz, s, ,s, ,st)~. (157) 
8182 J 

To get Eqs. (156a) and (156c) we have also exploited the fact that the 
denominators A ~(a) and A ~(c), Eqs. (137a) and (137c), respectively, are symmet- 
ric in the summation indices l" and 2", 

Now, the right-hand sides of Eqs. (135a) and (156a) are identical, since 
~ s  [S] = 4 and ~ s  ( - 1)s[s] = - 2  (recall that S assumes only two values: S -- 0 
and S 1). Thus, for (3), = R o (a), the results of two different spin-adaptation 
procedures are easily transformed one into the other. To show that the remain- 
ing expressions (155), (156c), (156e), (156g) and (157) are identical with their 
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counterparts given in Sect. 5, we have to apply slightly more complicated sum 
rules for 9-j and 12-j coefficients. 

We can easily verify that the 9-j symbol C, Eq. (32), satisfies the following 
relations [80, 81] (see also [40]), 

Z [s]c(s,, .¢;, s )  = ½, (158) 
S 

( - - 1 ) s [ s ] c ( s i ,  Si, S )  = --6Si~i[Si]-1, 
S 

(159) 

E [$1' S 2 ] C ( S i ,  S 1 ,  $2) = 2, (160) 
s 1 s  2 

E ( -1)$1[s1' S2]C(Si, $1, S2) = ~ ( -1)s2[Sl, S2]C(Si, S1, S2) = -1 ,  (161) 
S1S 2 SIs2 

~,  ( _ 1)s, + s2[$1 ' S2]C(S,, S 1, S 2) = ( _ 1)1 + s,. (162 )  
SIS  2 

In a similar way, we can show that the 12-j coefficient R, Eq. (153), satisfies 
[80, 81] 

[S', S2]R(S~, ~., S 1, S 2) = 1, (163) 
$IS2 

Y'. ( - 1 ) s ' [ s  1, S2]R(S,, ~,  S 1, S 2) = y'. ( - 1 )s2[s  1, S2]R(S,, ~,  S 1, S 2) = --½, 
SIs2  S1S 2 

(164) 

y ,  ( _ 1)s,  + s2[$1 ' S2]R(S,, ~, S 1, S 2) = 6s, g,[S, ] - i .  (165) 
SiS2 

For the 12-j symbol W, Eq. (154), two different categories of sum rules can be 
written. The following relations [80, 81] belong to the first category, 

~. [S 1, S2]W(S,, S~, S 1, S 2) = 26s,~,[S,]-' ,  (166)  
S1S 2 

Y. ( - 1)s,[s 1, s~]w(s,, g,, s 1, s ~) = Z ( - 1 )~[s , ,  s~]w(s,, ~,, s 1, s ~) 
S I s  2 SIs2  

= - 6s,g,[S~] - 1, (167) 

E ( -1 )~ '  + ~ [ s  ', s~]w(s,  gi, s 1, s ~) =½, 
S1S 2 

while the sum rules given below, namely [80, 81], 

(168) 

[S  1, S2]W(S z, S;, S~, S 1) =½, (169) 
SIS2 

(--1)SI[ S1, S 2 ] W (  8 2 ,  S i ,  S i ,  81) =½(-1)  ~i, (170) 
S i S  2 

( - 1) s~[s  1, S2]W[S 2, Si ,  ~ . ,  S 1) = ½( - 1) s', (171) 
S I s  2 

(-1)s1+s2[s~,s2]w(s2,  s i ,~i ,S')  =(-1)I+S'6sig,[S,]-I, (172) 
SIS2 
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belong to the second category. As a matter of fact, Eqs. (170) and (171) 
represent the same sum rule since [80, 81] 

W(S z, Si, S~, S 1) = W(S 1, gi, Si, Sz). (173) 

In further considerations, however, both relations (170) and (171) are useful. 
Equations (158)-(172) allow us to eliminate the 9-j and 12-j symbols from 

expressions (155), (156c), (156e), (156g) and (157) and to replace them by the 
same simple spin factors that result from the application of the bare-interaction 
technique [38]. Thus, inserting Eqs. (163)-(165) into Eq. (155), we immediately 
obtain expression (132f). Quite similarly, inserting Eqs. (158) and (159) into Eq. 
(156c) and Eqs. (160) - (162) into Eq. (156e), we get formulas (135c) and (135e), 
respectively. Finally, sum rules (166)-(172) allow us to convert Eqs. (156g) and 
(157) into Eqs. (135g) and (136a), respectively. 

It can be easily verified that Eqs. (150)-(152) represent all possible types of 
expressions for R~)(x), that result from the use of the spin-adaptation procedure 
[106, 107], except for the formulas for Rl4)(x), x = d, e, g - i ,  R~3)"(g) and R~)"(h), 
which are identical with the expressions obtained through the exploitation of 
bare-interaction approach [38]. We can thus conclude that the relationship 
between both spin-adaptation approaches employing either bare or spin-adapted 
interaction vertices is very simple for the problem considered in this paper. As in 
the case of CC equations, we must only expand the (anti)symmetrized two- 
electron interaction integrals [106, 107] in terms of non-symmetric v-matrix 
elements and apply the sum rules of the type given by Eqs. (158)-(172), 
whenever necessary. This brings about a considerable simplification, as a com- 
parison of Eqs. (150)-(152) with their counterparts given in Sect. 5 reveals. 
Although the procedure employing spin-adapted two-electron interaction vertices 
[106, 107] yields formally more compact formulas than the bare-interaction 
technique [38], they become much more complicated when written in an explicit 
form. For example, summations over S in Eqs. (151a) and (151c) involving 9-j 
symbols C factorize into much simpler products 

4( l ' r  II 1"2"5<1"2"11 l ' r )a 

and 

( dr I]1"2") { ( 1"2" II ~a ) - 26s,~,[s, ] - 1( 102" II ae) }, 

respectively, when a Goldstone-Brandow representation is used or, equivalently, 
when they are rewritten in terms of non-symmetric v-matrix elements. Since the 
spin-adapted two-electron interaction vertices enter the resulting spin diagrams, 
double summations over S 1 and S z appearing in Eqs. (150), (151e), (151g) and 
(152) involve the 9-j symbols C, Eq. (32), and the 12-j coefficients R and W, Eqs. 
(153) and (154), respectively. When bare-interaction vertices are used, these 
summations reduce to very simple bilinear forms in the non-symmetric v-matrix 

1 S elements with the coefficients proportional to spin factors 6s,~,. or ~[ ,., ~j]m. 
Some of these bilinear forms are extremely compact when expressed in terms of 
the matrix elements (rnn IlPq>~ and (rnn }lpq>s [cf., for example, Eq. (135e)]. 

To summarize, the diagrammatic spin-adaptation procedure employing 
Goldstone representation for two-electron interaction vertices [38] leads to 
simpler expressions for the components R}.~)(x) than the method using spin- 
adapted interaction vertices [ 106, 107]. On the other hand, the latter technique is 
more economical than the bare-interaction approach [38]. In order to evaluate 
matrix elements W~)X(e) (k = 3, 4), we have to draw 57 Goldstone-Brandow 
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orbital diagrams (cf. Figs. 7-9), while using spin-adapted interaction vertices 
and Hugenholtz representation, only 25 diagrams must be considered. Unfortu- 
nately, this advantage of the method of [ 106, 107] is partially lost since we have 
to construct and evaluate a relatively large number of quite comp/icated spin 
diagrams. Moreover, once all the Hugenholtz diagrams are drawn, it is not 
difficult to construct their pertinent Goldstone-Brandow versions. This is why 
the final expressions for W~)X(s) given in Sect. 5 were derived using the 
bare-interaction procedure [38] rather than the other method [106, 107], al- 
though the latter one was specially designed to evaluate expressions of the type 
(122). 

There is yet another, entirely different, diagrammatic spin-adaptation proce- 
dure, which yields expressions related to non-symmetric v-matrix elements and 
which was employed in [34] to evaluate the OIP effective interaction matrix 

w(3)~ W~.4)(s), Eqs. (116), respectively, in a straight- elements ..zj ( ) and (115) and 
forward way. It employs bare-interaction vertices but does not construct spin 
diagrams to evaluate the relevant spin factors. Instead, it introduces [34] 
appropriate orbital coupling coefficients that yield the required orthogonally 
spin-adapted doubly excited configurations by defining the spin independent 
operators R ~ ( S D ,  

R~b(Sg) = ½ ~ (mn}r(S,)]pq)N[EmpE, q], (174) 
rnnpq 

and their Hermitian conjugates L',,sb(sD. Here, the matrix elements (rnn]r(Si)lpq) 
have the same symmetry properties as the orthogonally spin-adapted biexcited 

lr s \  1 configurations / ~ , name y, ta b/s, 
(mnlr(S , )[pq)  = ( - 1)S'(mnlr(Si)lqp) = ( -  l)S'(nmlr(S~)[Pq) = (nm[r(Si)[qp),  

(175) 

and all of them vanish except for those involving the labels r, s and a, b. For the 
matrix elements <r lr(Si)lab> we then have [34] 

(rs[r(S~)[ab ) - 1re1 -l/sr r~rrs ~ -1 - -  ~ t o i J  I .~ , .b )  , ( 1 7 6 )  

where N~  is the normalization factor given by Eq. (20). Of course, 

L ~ ( S i )  - R~'b(S~) ~ = ½ ~ (pqll(Si))mn)N[EpmEq,], (177) 
mnpq 

where 
(pq  ]l( Si ) [mn ) = ( mn [r( Si ) [pq ). (178) 

One can easily verify that [34] 

Rr~b(Sj) = 2s, + lGr~b, (179) 

where 
:s~ + ' G ~  = 2s, + 1N~A,~,~(S~)E,,,Esb ' (180) 

is the spin-adapted excitation operator of [75, 76] which generates a normalized 
I k 

biexcited singlet configuration [r s x) ,  Eq. (18), from q~0. The pp-hh coupled 
I a b 

normalization factor 2s, + ~l,r'rr*,,b [75, 76] is related to the normalization factor N~,, 
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Eq. (20), as follows [40]: 

as, + 1 ,,nrrsab = ½[Si] - l/2Nr~, (181) 

SO that Eq. (176) can also be written as [34] 

(rslr(Si) lab) = (abl l(S,) lrs)  = 2s, + 'N~(1 + lab)(1 + fir,). (182) 

Equations (179) and (180) then give 

and w(¢)xt~ Eq. (122), can be expressed as a Fermi vacuum [8, 51, 52] mean " " lJ \ v ] ,  
value 

(k)X ~ rs Q(k) 
W i j  (8) = ( O l t a b ( S i ) V N e " ~ - ~ ' ~  V N R ~ f f b ~ S i ) ) ~ o ) .  (184) 

o - -  a~ N 

Since the excitation operators R~-{r(Si) and L'~*b(Si), Eqs. (174) and (177), 
respectively, can be regarded as general two-body operators, we can now easily 
evaluate the right-hand side of Eq. (184) by applying standard time-independent 
diagrammatic techniques [8, 51, 52]. Moreover, all the operators involved are 
spin independent, so that we can use the rules for spin-free formalism [8, 51, 52]. 
As in Sect. 5, we first construct all nonequivalent, nonoriented vacuum Hugen- 
holtz skeletons involving two nonoriented Hugenholtz V~ vertices and two 
similar vertices representing excitation operators L%(S~) and R ~ ( S i )  (cf. Fig. 
18). Orienting the lines we then obtain all the resulting Hugenholtz diagrams (see 
Figs. 3-5 in [34]). In contrast with the diagrams used in spin-adaptation 
approaches [38, 44, 106, 107], all the internal lines in Hugenholtz diagrams in 
[34] carry free (i.e., summation) labels. According to the rules of spin-free 
formalism [8, 51, 52], it remains to draw all the distinct Goldstone diagrams by 
replacing the interaction and excitation Hugenholtz vertices in each diagram by 
the corresponding Goldstone ones (cf., e.g., Fig. lb) and by performing an 
"exchange" operation on each vertex starting, for example, with the Goldstone 
diagram having a maximal number of loops (cf., e.g. [51]). Examples of 
Goldstone diagrams with a maximal number of closed loops that correspond to 
Hugenholtz diagrams, Figs. 3f and 4g of [34] (or Figs. 7f and 8g of this paper) 
are shown in Figs. 14 and 15, respectively. To evaluate these diagrams and all 
their exchange versions (as well as the remaining Goldstone diagrams associated 
with Figs. 3-5 in [34] or Figs. 7-9 of this article), we have to label the fermion 
lines by the appropriate particle or hole orbital indices, and find the correspond- 
ing weights and sign and scalar factors. We recall that each scalar factor, which 
is the product of v-, l-, and r-matrix elements divided by the MBPT denominator 
and summed over all orbital labels, must be finally multiplied by the numerical 
factor 2 t, where l is the number of closed loops (cf. Sect. 5). 

Grouping together expressions corresponding to all the Goldstone versions 
R (4) x of a given Hugenholtz diagram, we obtain formulas for the contributions _.~j ( ) 

(x = a - i ) ,  R~3)'(x) (x = a - h )  and o),, -, Ri) (x) (x = a - h )  associated with Figs. 7x 
(x = a - i ) ,  8x (x = a-h) ,  and 9x (x = a-h) ,  respectively. As was shown in [34], 
all these formulas have the following general form 

R(k)(x i j .  ) =  ~., ~ nk(X)[e--Dk(X)] -1 (k=3 ,4 ) ,  (185) 
{~auw;ega~,} {rr'} 
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1 1 
i i 
; i 
i i 

d 

Fig. 14. Goldstone representative of the 
Hugenholtz diagram 3f of [34] having a 
maximal number of dosed loops; for the 
labeling convention, see Sects. 2 and 6. 
This is one of 16 distinct Goldstone dia- 
grams that can be associated with four 
Goldstone-Brandow orbital diagrams of 
Fig. 7f 

1 u 

1' I 
i 

d 

Fig. 15. Goldstone version of the Hugen- 
holtz diagram 4g of [34] having a maximal 
number of dosed loops (see text for label- 
ing convention). The above diagram and its 
15 exchange versions correspond to the 
four Goldstone-Brandow orbital diagrams 
given in Fig. 8g 

where the numerator nk(x) is given by the products of two v-matrix elements and 
two orbital coupling coefficients, <cdll(S,)luw > and (ff~[r(~i)l?aT), whereas the 
denominators Dk(x) are given by the appropriate R H F  or Hfickel orbital energy 
differences (cf., Eq. (131)). Both in Figs. 14, 15 and in Eq. (185), summations 
over hole and particle labels carried by the lines interconnecting interaction 
vertices l '  and 1", respectively, are distinguished from the summations over hole 
and particle labels carried by the lines leaving or entering excitation vertices 
L~b(Si) and R~-~-(Si). The latter summations are symbolically denoted as 
~cd,,~;~7~- For  example, in the case of  the expression for R~4)(f), correspond- 
ing to the Goldstone diagram of Fig. 14 and all its exchange versions, 

{cduw;~.a~} cduw,~.~ 

Let us now concentrate on an explicit form of Eq. (185) for the contributions 
R!4)(f) and R~})'(g). By evaluating Goldstone diagram of Fig. 14 and all its 15 
distinct exchange versions and grouping together the resulting expressions, we 
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obtain the following formulas for the numerator n 4 ( f )  and the denominator 
D , ( f )  [34]: 

n a ( f )  = ( l 'e  lira >a < l"u Ill'c >a <cdlt(S,)luw >o <C,w Ir(g, )[c.d)a 
+ 3<rellC, l,,><l.ullcr><cdll(S,)lwu><i,wlr(,~)lde>, (186) 

O a ( f )  = Ax(1 ", u, ~, w; 1", c, e, d), (187) 

where (cf., Eq. (130)) 

(pql l(Si) lmn )a = 2(pql l (Si) lmn ) - (pqll(S~)lnm ), (188) 

<r~alr(L)lpq>o = 2<a,~lr('2,)lp@> - <r~lr(L)lqp>. (189) 

Similarly, by considering all 16 Goldstone diagrams that result from performing 
an "exchange" operation on each vertex of the diagram of Fig. 15, we find that 
[341 

n'a(g) = -2 [ ( ( l ' u l l  1"~)(1"~11 l'C)a + ( I 'u  Ilc,1"><1"ellc1%) 

x ( (cdl l (S  i ) luw)(awlr(L) led>o +<cdll(S,)lwu><awlr(L)lde>.) 
- 3< l'u lla l">< l"ellc l'>< cdlt( S,)lwu >< C, wlr( '~ )l de>], (190) 

n'a(g) = AX(1 ", a, w; 1", c, d). (191) 

Clearly, the main difference between n 4 ( f )  and n~(g) and their analogues v4( f )  
and v'3(g), Eqs. (132f) and (135g), respectively, lies in an appearance of  the 
orbital coupling coefficients (cdl l (Si ) luw) and ( ~ l r ( ~ i ) l ~ )  !n the former. 
Thus, to compare the above given formulas for R~4)(f)  and R~ ) (g) with those 
derived earlier using the diagrammatic spin-adaptation procedure of  [38], we 
must perform the summations over the indices c, d, u, w and ~, ~ and remove the 
non-zero l- and r-matrix elements by applying Eqs. (176) and (178) or Eq. (182) 
and the symmetry properties (175). 

Let us first rewrite expressions for the numerators n 4 ( f )  and n~(g), Eqs. 
(186) and (190), respectively, as follows: 

n4 ( f ) = ( cdll( S, ) luw ) ( aw [r( S, ) led> 

x {t2 - ( - 1) s'][2 - ( - 1)&] ( l ' e  II 1-a>o <l,u II 1,c>o 

+ 3( - 1) s' + ~' (l't~ lift l " ) ( l " u  Ilc 1')}, (192) 

n'a(g) = - 2(cdll(Sj)luw ) (awlr (S , ) led)  

x {[1 + ( -- 1) s• + x , ] [2  - ( - 1)q(<l'ulll"a><l"elll'c>o 
+ < l ' u l l ~ , l " > < l " ~ l l c l ' > a )  - 3(-  1) s, +m<l'ullal"><l"ellcl">}. (193) 

Here we applied the symmetry properties of  the l- and r-matrix elements, Eq. 
(175), and definitions of <pqlt(Si)[mn>a and <~alr(L)lp#>o. Eqs. (188) and 
(189), respectively. Since the intermediate spin quantum numbers, S, and ~,., 
assume only two values, 0 or 1, we can write the following relations 

2 - ( - 1) s, = [&], (194) 

2 - ( - 1) & = [g,], (195) 

1 + ( - 1) s, + & = 2 6 s , ~ .  ( 1 9 6 )  
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Consequently, formulas for the numerators n a ( f )  and n'a(g) become 

h i ( f )  = 4[S/, ~.] '~(cdJl(S,)luw>(fwlr(~,)l~d > 

x {½[S,, ~.1 '/2(( l'all l " f>( l "u  II l 'c},, -- ( l ' a l l f  1"}( l"u 11 l 'c}) 

+A(S~, ~,) (l'a/]t~ 1")( l"u Ilc 1")} , (197) 

n ~ (g) = -- 4[S,, ~, ]'/=<call(s,)luw > ( fw  [r(L)l?d) 
>( {t~Si~i ( ( 1 / u  [I l t t f ) ( l t ta l l  ltC>a -- ( l ' u  Ill l")( l"el[  l ' c ) )  

+ s(s,, L ) < l" u llf l">< l"a)lc l"> }, (198) 
where 

A ( S , , S , )  ' = ~([SD (~i] 1/2 + 3( - 1) s' + S'[S i, ~-] -,/2), 

and 

(199) 

R}.~)(f) = ~ ~ N4(f)[e - D , ( f ) ] - ' ,  (201) 
cduw l'l" aJ~g, 

R~)'(g) = ~ Z N~(g)[e - D~(g)] - ' ,  (202) 
cduw l'l" ?Ja~ 

where 

N 4 ( f  ) = ( w [ f  )(dlaT)n4(f  ), (203) 

N'3(g) = (wJf )( dlcT)n'3(g). (204) 

We can also easily verify that 

A ( S ,  .~ ) = 6s, s,, (205) 

whereas 

B(S,,  #,) = ½[S,, ~.] ,/2, (206) 

for S,- and ~ equal to 0 or 1. Consequently, expressions for the numerators 
N 4 ( f )  and N'3(g), Eqs. (203) and (204), respectively, can be given the following 
form: 

U 4 ( f )  = 4[S,, g,l'/2(cdlt(s,)luw >(aft [r(g,)lag>(w If >(dig> 
X {l[si,  Si] l/2((ltel/ l # u ) (  lnl't II l tC)a 

- <1 '~ l l f1">(1"u  I11'c>) + ~s:,<l'~Hfl"><l"ullcl'>L <207) 

N'3(g) = -4[S; ,  ~,.] ~/2(cdll(S~)luw)(ff lr(S,)lYcT)(wlf}(dIZl} 

x {as, s,((l'u I[ l"f)(l"al[  l'c>. - ( r u  11 f l")(l"al[ l'c>) 
+ l t s i ,  ~1 i/2( ltu lift 1")( lt'c 1[ C l ')}. (208) 

B ( S ,  S,) = 238~s, - ~( - 1) s' + St[S, ~,1 -,/2. (200) 

Now, to get the explicit expressions for R u(4)(f) and R}.])'(g) we have to insert 
Eqs. (197) and (198), respectively, into the right-hand side of Eq. (185) and 
perform the summations over the orbital indices e, d, u, w, ?, t~ and 1', 1". Since, 
however, we wish to compare the results of  these summations with the formulas 
given in Sect. 5, we introduce Kronecker delta symbols (wlff)  and (dlaT) into 
Eqs. (197) and (198) and replace the summations over c, d, u, w, ? and f by the 
summations over c, d, u, w and ?, aT, fi, f .  In this way, we obtain 
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Notice the similarity between the right-hand sides of Eqs. (207) and (208) and 
the formulas for the numerators v4(f) and v;(g) given in the previous section, 
Eqs. (132t") and (135g), respectively. 

All matrix elements <aff(r(g,)l~a7> (<cdll(S,)luw>) vanish except for those 
involving the labels f, g and ~, ~" (a, b and r, s), so that the summation over c, 
d, u, w and g, aT, ~, # in both Eq. (201) and Eq. (202) reduces to at most sixteen 
terms. It also follows from the symmetr~ properties of the r-matrix elements, Eq_ 
(175), that any matrix element <a~,lr(Si)lOd> involving the labels f, ~ and 5, b- 
can be related to the matrix element (e~[r(g,)l~>. Similarly, every matrix 
element < dl (s,)luw> involving the labels a, b and r, s differs from <abl~(Si)lrs> 
by at most a phase factor ( - 1 )  s,. Consequently, expressions for R~)(f)  and 
R}})'(g) take the form 

R~)(f  ) = 4[S~, L ] 1/2( ab [I(S,)Irs >(~g [r(,~,)I~'> (N~ N~-~) 2 

× SPrs(Si)°qa~(Si)SPab(Si)~g(~i) E v 4 ( f ) [ 8  - -  A 4 ( f ) ] - 1  
1"1" 

R ~)'(g) = 4[S,, ~, ]1/2 (ab [I(S,)Irs > (fglr(g,)I~)(NTb N~): 

(209) 

x Sf~(S~),.~(~)9~b(S~)~,~(~) ~ v~(g)[e -A~(g ) ] - ' ,  (210) 
1'1" 

where the numerators v4(f) and v'3(g) are given by Eqs. (132f) and 
(135g), respectively, and the denominators A4(f)  and A ~ ( f )  by Eqs. (133f) and 
(137g), respectively. The product of the (anti)symmetrizers, 6~,s(Si)re~(St) 
X ~ab(Si)~Q~(~i), produces 16 terms, when acting on ~ 1,1- v4(f)[8 - -  A4(f)]-  I or 

1.1. v'3(g)[e- A "3 (g)]-1. To eliminate repetitions of identical terms in case the 
hole (a and b or ~ and b') and/or particle (r and s or i and s') labels are equal, we 
have introduced the factor (N~N~;)2 = [(1 + ~ab)(1 "l-t~rs)(1 q-t~,~b')(1 + t~-g)]-1 
One can easily verify that (see Eq. (176)) 

4[Si, ~i]l/:(ab[l(S,)irs)<~gir(g,)l~G)(N~'bN~) 2 = N',~N~. (211) 

Thus, Eqs. (209) and (210) are identical with the expressions for R~)(f)  and 
R~3)'(g) given in Sect. 5. 

R(~c) X In a similar way, we can transform the remaining expressions for --o ( ) 
given in [34] into the formulas derived in the previous section. We thus see that 
the relationship between the results of both spin-adaptation approaches ([ 34] and 
[38]) is rather simple, particularly in view of their different nature. Let us 
summarize the transformation procedure that we have just performed. First, we 
carry out the summations over all the orbital labels that appear in l- and 
r-matrix elements. Then, the remaining non-vanishing l- and r-matrix elements 
have to be removed by applying Eqs. (176) and (178) as well as the symmetry 
properties (175). In order to introduce the spin factors, which result from 
angular momentum theory, we must additionally apply relations of type ( 194)- 
(196) and (205) and (206). We see (of. Eqs. (185)-(187), (190), (191) and their 
counterparts in Sect. 5) that the above operations introduce essential simplifica- 

R(k) X tions into the resulting expressions for ..,.j ( ) .  Indeed, summations over the 
labels carried by the lines leaving and entering Goldstone interaction vertices 
L~b(Si) and ~ - r~ Ra~(Si) disappear, the orbital coupling coefficients (cdll(Si)luw) 
and (t~#}r(~)l?aT) are replaced by very simple normalization and spin factors, 
and expressions, which are formally quartic in different types of orbital matrix 
elements, become simple bilinear forms in v-matrix elements. The price that we 
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have to pay for these simplifications is very small, namely the introduction of the 
"symmetry forcing" projectors ~k(X). 

The spin-adaptation procedure that was exploited in [34] is undoubtedly 
much simpler than the method of [38]. Spin diagrams are not constructed, so 
that the graphical techniques of spin algebras can be replaced by much simpler 
and standard diagrammatic spin-free formalism. However, the normalization 
and spin coupling coefficients do not appear in an explicit form but rather in an 
implicit way as the l- and r-matrix elements. Consequently, approach [34] yields 
more complicated expressions. Moreover, the number of orbital diagrams, which 
have to be explicitly considered, is much larger when using the technique of [34]. 
For example, in the case of the contributions R~( f )  or R~.~'(g), we have to 
draw and evaluate 16 distinct Goldstone diagrams instead of 4 Goldstone- 
Brandow diagrams shown in Figs. 7f and 8g, respectively. This drawback of the 
approach [34] is of course connected with the fact that both interaction and 
excitation vertices are represented in Goldstone form. Finally, an incorporation 
of higher than double excitations into the spin-adaptation formalism [34] would 
be rather complicated. Spin-adaptation procedures based on the graphical tech- 
niques of spin algebras employing either bare [38] or spin-adapted [106, 107] 
interaction vertices are free from the above shortcomings. For example, higher 
excitations can be incorporated into these formalisms at the same level of 
complexity as double excitations [39]. 

The above discussion implies that an application of the diagrammatic 
spin-adaptation approach of [38], which was originally elaborated in the context 
of the CC theory, yields the simplest structure of explicit expressions for the 
effective interaction matrix elements W~x(e). The use of spin-adapted interac- 
tion vertices in diagrams and the (anti)symmetrized v-matrix elements in formu- 
las or orbital normalization and coupling l- and r-coefficients and spin-free 

Wi~ (e, unnecessarily complicated. The formalism make the expressions for (k~x 
orthogonaUy spin-adapted equations given in Sect. 5 are extremely compact, 
particularly when we realize that the effective interaction matrix elements are not 
trivial quantities and that their evaluation is rather demanding. Most impor- 
tantly, expressions derived in Sect. 5 are not only formally appealing but also 
computationally advantageous. For these reasons, they were used in actual 
calculations reported in Parts II and III of this series, where the orthogonally 
spin-adapted formulations of the CC methods, CCDT-1, CCD + T(CCD) and 
ACPTQ, as well as the OIP technique are implemented and applied to the PPP 
n-electron model of cyclic polyenes. 

Appendix: Diagrammatic derivation of the explicit expressions 
" / lv I 

for the matrix elements / IM. 
/ ,  ,J bL t, ° t 61 , 

and s,~" bll/Nl" /~S, 
General formulas for matrix elements of arbitrary one- and two-electron opera- 
tors in the normal product form between the ground state and orthogonally 
spin-adapted pp-hh coupled biexcited singlet states as well as between the 
orthogonally spin-adapted doubly excited configurations themselves were, in 
fact, already given as early as in 1966 by ~i~ek [43]. Although the derivation of 
these expressions was to a large extent accomplished by exploiting the time 
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independent diagrammatic techniques based on the second quantization formal- 
ism and Wick's theorem [8, 51, 52], the spin-adaptation and the subsequent 
derivation of matrix elements between spin symmetry adapted configurations 
was carried out algebraically. The same matrix elements were considered once 
more by Paldus et al. [44]. It was shown that the time independent diagrammatic 
techniques [8, 51, 52] may be conveniently combined with the graphical methods 
of spin algebras [22, 80, 81], so that both the orbital factors and the associated 
spin coupling coefficients can be found in a straightforward, purely graphical, 
manner. However, in order to get the pertinent orbital factors, a Goldstone 
representation was assumed for both one- and two-electron vertices and biexcited 
configurations. Consequently, a considerable number of resulting orbital dia- 
grams (4, 2 and 12 for the matrix elements considered [44]) had to be explicitly 
drawn giving, after their evaluation, numerous terms having common spin 
coefficient. Additional algebraic manipulations had to be carried out in order to 
write the final formulas in a concise form. We shall now show that the desired 

expressions for s, lra ~GNI~ ~l:ri' (¢o VNI~ ~IS,~" , and 

( r  b VNa~ ~ )  sl a ~ ~i can be obtained in a much simpler manner using the 

diagrammatic spin-adaptation procedure of [38]. Although this procedure, as 
briefly outlined in Sect. 2, still employs the Goldstone form for one-electron (GN) 
and two-electron (V~v) vertices, Fig. la and b, respectively, it uses the Hugen- 
holtz (Brandow) form to represent bra and ket orthogonally spin-adapted 
doubly excited states (see Fig. le and c, respectively). Consequently, the number 
of the resulting orbital diagrams is considerably smaller. 

Let us start, for example, with the matrix element sl(ra bGN~S I I f ~)g ~' 
where GN is a one-body operator. Applying a concise notation for the distinct 
labeling schemes carried by external lines, which employs symmetrizers 6"ab(SeaG ) 
and ~rs(~e) [40] (cf., Sect. 2), we must explicitly draw only two Goldstone- 
Brandow diagrams shown in Fig. 16 (as in Sects. 5 and 6, Brandow vertices 
representing both bra and ket configurations given in Fig. le and c, respectively, 
are not explicitly drawn). Evaluating orbital and spin factors corresponding 
to diagrams in Fig. 16a,b, in which symmetrizers 6eab , ~G, ~s  and ~e  are 
ignored, and making use of the fact that there is a one-to-one correspondence 
between the operators ~ab, ~G, ~ and ~ in diagrams and (anti)symmetrizers 

I I 

SrsS~s_Sao a ~ ~ SabS~Srs r ~ 
S g S .~ 
b > b b > t> 

(a)  (b}  

Fig. 16. Go]dstone-Brandow orbital diagrams associated with successive terms on the fight-hand 
side of Eq. (A2) 
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~b(Si), ~¢(~i), ~ (S i )  and 6e~e(Si) in associated algebraic expressions, we find 
that 

si 

can be written as 

G~j = Gij(a) + Gij(b), (A2) 
where 

Gij(a) = N%N~rs, s,~b(S~)(a]6)(bl~)S~rs(Si)S~(Sg)(rlgl~)(s]g), (A3) 

G~j(b) = -N~bN~3s,~,S,~s(Si)(rlF)(sl,~)~b(S~)A~G(Si)(~lgla)(bll~), (n4) 

are the expressions corresponding to Fig. 16a and b, respectively. This is the 
desired result [43, 44], which we used in Sect. 4 (see Eq. (110)). Instead of 4 
Goldstone diagrams given in [44], only 2 diagrams are needed when Goldstone- 
Brandow representation is employed. 

The advantages of the latter representation are even bigger when considering 
matrix elements 

v .  = (AS) 

In this case, instead of 12 Goldstone orbital diagrams [44], only 4 Goldstone- 
Brandow diagrams, shown in Fig. 17, are needed. All of them result from one 
nonoriented Hugenholtz skeleton, which is schematically illustrated in Fig. 18. 

r ? F a> ? >~ 
I I 
I I 
I I 
I I 

, ~ S r s S a b  I SabS, s S~ ~ ~ b~ 1. >b 
a ~ r 
b b s g 

(a) (b) 

SrsSe SabS   s 

b ~ B 

r~ f _ F 
I 
I 
I 
I 

a~ z 

s ~ g 

(c) 
Fig. 17. Goldstone-Brandow orbital diagrams corresponding to successive terms on the fight-hand 
side of Eq. (A6) 
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Fig. 18. The only arrowless Hugenholtz skeleton corresponding to Eq. (A5). As usual, the small solid 
circle represents the nonoriented Hugenholtz VN vertex. Both bra and ket biexcited configurations are 
represented by large open circles. All Goldstone-Brandow diagrams of Fig. 17 can be obtained from 
the above skeleton in the usual way by introducing the orientation of lines, replacing Hugenholtz 
VN vertex by the Goldstone one and by labeling the excitation vertices and oriented fermion lines 

with appropriateindices specifying configurations s,(: ~[and ~ ~)~ 

The third and fourth diagrams in Fig. 17 are grouped together, since they are 
two distinct Goldstone-Brandow representatives associated with one oriented 
(particle-hole type) Hugenholtz skeleton. Applying the general rules of the 
diagrammatic approach of [38], we obtain 

where 

Vii = V~j(a) + Ve(b ) + V~j(c), (A6) 

Vii(a) N~: Ne~ 6 A rig+" ~/r- = ab ~t~ Si~ i ab~,~-~iJk b ' l IrS)S i, (A7) 

Nr~ N ~  n ~ b Vi i (b )  : ab ~ ( ~ s i a i a r s ( S i ) (  gila >s,, ( m 8 )  

Nrs N ~  ~ ~ ~ Vii(C) = ab a g ~ r s ( S i )  ~(S,)~a~(S,)~(~,)<sls)<blg) 
× {½[S, L]  '/2( r~ [[a~> - as,a, <r~ Ilea>}, (A9) 

are the algebraic expressions corresponding to Fig. 17a, b and c, respectively, 
a~ r$ and the quantities A~bb(S~) and A~](S~) are defined by Eq. (I l l ) .  An identical 

result is given in [43, 44] (except for a different phase convention used in [43, 44] 
S~ +ai  which gives an additional phase factor ( -  1) " ; cf., Sect. 2). 

Equation (A6) together with Eqs. (A7)-(A9) are needed to calculate matrix 
elements f/~v and W~.)(e) appearing in the OIP formalism, when the PPP model 

are also required (cf., is examined (see Sect. 4). Matrix elements ~o VN gl ~ ~ 

Eq. (108)). However, these already appear in the orthogonally spin-adapted form 
of the CCD equations, Sect. 2, as the quantities (cf., Eq. (27)) 

AtO)(rs, ab; Si) =(N~b)_l r HN ~o = ( N ~ ) -  VN #o • (AIO) 
s, a s, a 

Therefore (see Eq. (28)), 

( q b o V u ~  ~ s )  N~A<°)(Fg, i't~;'i)*-N~G['i]l/2(,~[[Fg)a~,- ~ (Al l )  

which is the desired result [43, 44]. Goldstone-Brandow orbital diagram corre- 
sponding to Eq. (A10) is shown in Fig. 2. Obviously, the diagram associated 
with expression (A11) is conjugate to diagram 2 and carries labels F, g, fi and ~'. 

The main aim of this Appendix was to show that the results of [43] and [44] 
are easily reproduced by constructing the pertinent Goldstone-Brandow dia- 
grams, which are fewer in number than the corresponding Goldstone diagrams, 
and evaluating them using the procedure of [38]. Further reduction in the 



Orthogonally spin-adapted coupled cluster approaches 125 

number of resulting diagrams is achieved when a Hugenholtz representation is 
employed for all vertices and the spin adaptation procedure of [ 106] and [107] is 
applied. In the cases examined here, this reduction (from four to three diagrams) 
occurs only for (¢~i IV N I~j ) elements (two diagrams of Fig. 17c are replaced by 
one). However, the price we have to pay for this minor reduction is the 
appearance of the nontrivial 9-j symbol C, Eq. (32), in the expression for Vii(c), 
since, in contrast to bare interaction vertices, spin-adapted interaction vertices 
enter the resulting spin diagrams. We obtain 

- NabNaG[S,, S,] ~r , (Si )6P~(Si)~b( i )6ea~(Si)  V , j ( c ) -  " ~ - ~ /2  ~ S ~ 

× <sl~)<blE> Z [sic(s,, ~;, s)<ra Ila~>s. (A12) 
s 

We thus see that the result for Vij- becomes unnecessarily complicated (cf., Sect. 
6 and discussion in [40]). We can, of course, show that Eqs. (A9) and (A12) are 
equivalent by applying the sum rules (158) and (159)as it was done in Sect. 6 or 
in [40]. 
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